

2024 SCHOLARSHIP EXAMINATION

DEPARTMENT Computer Science

COURSE TITLE Year 13 Scholarship

TIME ALLOWED FIVE hours with a break for lunch at the discretion

of the supervisor

QUESTIONS There are TWO questions in the paper. Candidates are to

answer BOTH questions. Answer as much of each question

as you can. Note that Question 2 is significantly more

difficult than Question 1. Plan your time to allow a good

attempt at each.

INSTRUCTIONS Candidates may use any text or manual or online

programming language documentation for reference during

the examination. Candidates may not copy code from the

internet or consult anyone other than the examiners during

the examination

DETAILS Both questions pose problems which you are asked to solve

by writing computer programs. They may also ask for

written answers for some problem parts. In programming

you may work in the programming language of your choice.

However, the examiners need to be able to read your

program text and if at all possible, test run it. If problems

arise from your choice of programming language, we may

contact you after the examination, for clarification. Written

answers to parts of questions can be submitted in text files;

included as comments in your program text; or as

photographed or scanned images of hand written documents.

Remember also that partial marks may be awarded for

programming ideas written down, but not yet implemented.

CALCULATORS PERMITTED Yes

- 2 -

QUESTION 1 CONTINUES ON THE NEXT PAGE

1. Animal Wordle (Careful and Accurate Programming)

Your programming work in this question will be assessed on three criteria:

(a) Completeness and accuracy of the program. It may be that this problem statement does

not state exactly what the program should do under all circumstances. If you find a
situation of that nature, choose a solution and write down, either on paper or in the
comments of your program what the difficulty was and how you chose to resolve it.

(b) Good presentation. That is, it should make good use of programming language facilities,

be well organised, neatly laid out, and lightly commented.

(c) Careful checking. Wherever possible check input from the program user in case they

have made errors.

Wordle is a word game that was created and developed by Welsh software engineer Josh

Wardle. In the original version of Wordle, players have six attempts to guess a five-letter
word, with feedback given for each guess in the form of coloured tiles indicating when

letters match or occupy the correct position.

In this question, you are asked to write a program that simulates a game of Animal Wordle.

In Animal Wordle, players have six attempts to guess a four-letter animal, with feedback

given for each guess indicating when letters match or occupy the correct position. If a
character is in the correct position, it is indicated with a hash (#). If a character is correct,

but in the wrong position, it is indicated with a hyphen (-). If a character is incorrect, it is

represented with a full stop (.).

Your program should randomly select a four-letter animal from a pre-defined list (included
below). It should then allow the user to guess the animal, one letter at a time. Each letter

must be one character long, must contain alphabet characters only (i.e. a-z, A-Z), and

should not be case sensitive. Please note, your program is not expected to validate whether
the user’s guess is a valid word. For example, both “duck” and “abcd” would be valid
guesses. Your program should store the guess as a list and then compare each letter with

the animal. Finally, your program should provide feedback to the user in the form of

matching characters (#, -, and .) as outlined in the Animal Wordle description above. The
program should do as follows.

 Ask the user their name

 Ask the user if they would like to play Animal Wordle

 Randomly select a four-letter animal from a pre-defined list

 Allow the user to guess the word, one letter at a time

 Provide feedback to the user in the form of matching characters (#, -, and .)

 Repeat until either (a) the user has run out of guesses or (b) the user has guessed

the correct the word

The transcript of a sample interaction with such a program is given on the next page. In

the transcript, information entered by the user is shown in bold type. You don’t have to
follow this style of data entry or format results in the same way. The sample is just here to

show the kind of interaction expected of your program.

The pre-defined list of animals is as follows.

["duck", "goat", "bear", "lion", "frog", "deer", "swan", "wolf", "crab"]

- 3 -

QUESTION 1 CONTINUES ON THE NEXT PAGE

Welcome to Animal Wordle!

Wordle is a word game that was created and developed by Welsh software engineer

Josh Wardle. In the original version of Wordle, players have six attempts to guess

a five-letter word, with feedback given for each guess in the form of coloured

tiles indicating when letters match or occupy the correct position.

In Animal Wordle, players have six attempts to guess a four-letter animal, with

feedback given for each guess indicating when letters match or occupy the correct

position. If the character is in the correct position, it is indicated with a hash

(#). If a character is correct, but in the wrong position, it is indicated with a

hyphen (-). If a character is incorrect, it is represented with a full stop (.).

Please enter your name: Greta

Hi Greta! Would you like to play Wordle? [y/n]: y

You have 6 guesses left.

Please enter your four-letter guess:

 Letter 1: d

 Letter 2: u

 Letter 3: c

 Letter 4: k

Result:

Whoops, no letters are correct! Keep guessing!

You have 5 guesses left.

Please enter your four-letter guess:

 Letter 1: l

 Letter 2: i

 Letter 3: o

 Letter 4: n

Result: ..#.

Getting there! Keep guessing!

You have 4 guesses left.

Please enter your four-letter guess:

 Letter 1: b

 Letter 2: e

 Letter 3: a

 Letter 4: r

Result: ...-

Getting there! Keep guessing!

You have 3 guesses left.

Please enter your four-letter guess:

 Letter 1: w

 Letter 2: o

 Letter 3: l

 Letter 4: f

Result: .-.-

Getting there! Keep guessing!

You have 2 guesses left.

- 4 -

Please enter your four-letter guess:

 Letter 1: g

 Letter 2: o

 Letter 3: a

 Letter 4: t

Result: --..

Getting there! Keep guessing!

You have 1 guesses left.

Please enter your four-letter guess:

 Letter 1: f

 Letter 2: r

 Letter 3: o

 Letter 4: g

Result: ####

Woohoo! You guessed the word correctly!

- 5 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

2. Visualising Graphs (Problem Solving and Programming)

 Your programming work in this question will be assessed on three criteria:

 (a) Your approach to the problem. We will be looking at your work for evidence that you

found good ways of storing the necessary data, and devised algorithms for finding and
displaying the requested results. Please hand in any notes and diagrams which
describe what you are attempting to program, even if you don’t have time to

code or complete it. You may include comments in your program, or write a

description of your program to hand in.

 (b) The extent to which your program works and correctly solves the problem.

 (c) The extent to which you use results from your programming to explore the problem
presented.

You may find that the programming language you use makes it difficult to produce output as
shown in the example implementation steps below. If this is the case, feel free to build your
program in a way that suits your circumstances.

Note: Five text files have been provided to you: simple_graph_1.txt, simple_graph_2.txt,
simple_graph_3.txt, bad_graph.txt, and graph_surprise.txt.

You are a researcher at the University of Waikato. As a researcher diving deep into a sea of

data, you’re on a thrilling quest to uncover hidden patterns and insights. To make this

adventure even more exciting, you’re tasked with creating a program that crafts custom
graphs to visualize your findings! Imagine transforming numbers into stunning visuals that

tell the story behind your data. With each graph you build, you’ll be one step closer to

unlocking the mysteries and trends waiting to be discovered. Get ready to turn raw data

into eye-catching, insightful visualizations that will make your research shine!

In this question, you are asked to write a program that takes a series of x and y co-
ordinates and displays them on a graph visualisation. The question presents the problem

in stages for you to program. We suggest that you build your program in the order given.

This will make it likely that you have parts working at the end, even if you don’t have time

to complete the whole program. We also strongly suggest that you read through all the

stages before starting to program. Stages I and J are the final stages, in which you have
the most freedom to explore algorithmic ideas.

The stages of this problem involve building and changing a program. Instructions will be

given in some detail for the first stages. Later stages require that you develop the code

yourself. When you are making a major change, you should save a working version of your

program. This will help us see what you have achieved, especially if you have difficulties
with the altered version. Where stages ask you to try different ways of displaying the

output, you can write different display procedures within the same program to make sure

that all of your answers are still visible to the examiner.

(continued on the next page)

- 6 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

Setting up the Graph

Stage A: Building the graph axes

Write a program to draw the x-axis and y-axis of a graph using text characters. The y-axis

should be 9 characters high, and the x axis should be 25 characters wide. The result should

be similar to the figure below (each cell in the graph is one line high and one character wide).

Stage B: Adding a scale

The next thing you need to do is add a scale to the y-axis. The centre of the scale should be

0, with positive integers increasing and decreasing vertically. Given a y-axis that is 9 items
high, your scale should look as below.

Stage C: Moving the x-axis

Your x-axis should align with the 0 position. Move your x-axis to match the graph shown

below. Hint, if you haven’t already, it would be useful to make the height and width of your
graph dynamic. E.g. use variables to store the height and width of your graph.

|

|

|

|

|

|

|

|

|

+-------------------------

 4|

 3|

 2|

 1|

 0|

-1|

-2|

-3|

-4|

 +-------------------------

 4|

 3|

 2|

 1|

 0+---------------------------

-1|

-2|

-3|

-4|

- 7 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

Displaying data on your graph

Stage D: Adding data with y-values

Now that you have set up your graph, you can start using it to visualise data.

Display data on your graph using the following y-values. Each data point should be

represented by an “x”. Your graph should be 9 items heigh, and should have a width that

allows for all of the y-values (15) to be displayed.

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

The output below shows an example of the graph.

Stage E: Adding data with x-values

Extend Stage D to include an additional set of data points, based on the x-values below.
Each data point should be represented by an “x”. Your graph should have a height that

allows for all the x-values (11) listed below to be displayed.

[4,4,4,4,4,4,4,4,4,4,4]

The output below shows an example of the graph.

Stage F: Adding data with x and y values

Now that you can add data with x-values and y-values separately, expand your program so

that it can display a data point based on both its x and y co-ordinates. A 2-D array of x
and y values is included below.

[[0,0],[1,1],[2,2],[3,2],[4,1],[5,0],[6,-1],[7,-2],[8,-2],[9,-1],[10,0]]

 4|

 3|

 2|xxxxxxxxxxxxxxx

 1|

 0+---------------

-1|

-2|

-3|

-4|

 5| x

 4| x

 3| x

 2|xxxxxxxxxxxxxxx

 1| x

 0+----x----------

-1| x

-2| x

-3| x

-4| x

-5| x

- 8 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

The output below shows the visualization that should be displayed when using the x and y
values included above.

Stage G: Reading a graph from file

Extend your program to read x and y co-ordinates from file. Note: five text files have been
provided to you: simple_graph_1.txt, simple_graph_2.txt, simple_graph_3.txt, bad_graph.txt,
and graph_surprise.txt.

Each file includes one set of x and y co-ordinates per line, where each line includes the x-

axis value followed by the y-axis value, separated by spaces. The first three lines of

simple_graph_1.txt are as follows.

9 -1

6 -1

1 1

The images below show the expected output from simple_graph_1.txt, simple_graph_2.txt,
and simple_graph_3.txt. bad_graph.txt can be used as an example of a bad input file. Your

program should handle bad input files gracefully. graph_surpise.txt contains an additional

graph – you won’t know what is in it unless you can successfully read it into your program!

Stage H: Writing to file

Once you have visualised the graph, you may like to keep a copy of it. Extend your
program so that the graph is saved to a text file.

Advanced features

Stage I and J are the final stages, in which you have the most freedom to explore

algorithmic ideas. These stages can be completed in any order, and can be completed on

their own, or in conjunction. For example, you can create your own graph (Stage I), or you
can investigate techniques for filling in missing data points (Stage J), or both. Include

comments in your code that demonstrate your thought processes and your approach.

 2| xx

 1| x x

 0+x----x----x

-1| x x

-2| xx

 2| xx

 1| x x

 0+x----x----x

-1| x x

-2| xx

simple_graph_1.txt

 5| x

 4| x x

 3| x x

 2| x x

 1| x x x

 0+xx-x---x---------xxx

-1| x x

-2| x

simple_graph_2.txt

 5|xxx

 4| x

 3| x

 2| xxxx

 1| x

 0+-----x------

-1| xxxx

-2| x

-3| x

-4| xxxx

simple_graph_3.txt

- 9 -

Stage I: Creating your own graphs

So far, your program can only visualise graphs that are hard-coded into your program

(Stages D-F) or that have been provided in a text file (Stage G). Extend your program so

that you can create your own custom graphs. This could involve allowing the user to input
their co-ordinates, randomly generating a set of co-ordinates on the fly, both of these

techniques, or something completely different.

Stage J: Connecting the dots

So far, all of our graph examples have included a complete set of co-ordinates, e.g. we
could connect all of the points on the graph to create a continuous line. However, real data

will often be missing some data points. For this task, investigate techniques for filling in

missing data points. Hint: to do this, you could manually create a new set of co-ordinates
where some are missing, or you could alter one or more of the existing files, manually
removing a subset of data points. Once you have an incomplete set of co-ordinates, you can

then start investigating techniques for filling in the missing values.

