#ifndef UNITY_GEOMETRICTOOLS_INCLUDED
#define UNITY_GEOMETRICTOOLS_INCLUDED

//-----------------------------------------------------------------------------
// Transform functions
//-----------------------------------------------------------------------------

// Rotate around a pivot point and an axis
float3 Rotate(float3 pivot, float3 position, float3 rotationAxis, float angle)
{
    rotationAxis = normalize(rotationAxis);
    float3 cpa = pivot + rotationAxis * dot(rotationAxis, position - pivot);
    return cpa + ((position - cpa) * cos(angle) + cross(rotationAxis, (position - cpa)) * sin(angle));
}

float3x3 RotationFromAxisAngle(float3 A, float sinAngle, float cosAngle)
{
    float c = cosAngle;
    float s = sinAngle;

    return float3x3(A.x * A.x * (1 - c) + c,        A.x * A.y * (1 - c) - A.z * s,  A.x * A.z * (1 - c) + A.y * s,
                    A.x * A.y * (1 - c) + A.z * s,  A.y * A.y * (1 - c) + c,        A.y * A.z * (1 - c) - A.x * s,
                    A.x * A.z * (1 - c) - A.y * s,  A.y * A.z * (1 - c) + A.x * s,  A.z * A.z * (1 - c) + c);
}

//-----------------------------------------------------------------------------
// Solver
//-----------------------------------------------------------------------------

// Solves the quadratic equation of the form: a*t^2 + b*t + c = 0.
// Returns 'false' if there are no real roots, 'true' otherwise.
// Ensures that roots.x <= roots.y.
bool SolveQuadraticEquation(float a, float b, float c, out float2 roots)
{
    float det = Sq(b) - 4.0 * a * c;

    float sqrtDet = sqrt(det);
    roots.x = (-b - sign(a) * sqrtDet) / (2.0 * a);
    roots.y = (-b + sign(a) * sqrtDet) / (2.0 * a);

    return (det >= 0.0);
}

//-----------------------------------------------------------------------------
// Intersection functions
//-----------------------------------------------------------------------------

bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection,
                      float3 boxMin,    float3 boxMax,
                      float  tMin,       float tMax,
                  out float  tEntr,  out float tExit)
{
    // Could be precomputed. Clamp to avoid INF. clamp() is a single ALU on GCN.
    // rcp(FLT_EPS) = 16,777,216, which is large enough for our purposes,
    // yet doesn't cause a lot of numerical issues associated with FLT_MAX.
    float3 rayDirInv = clamp(rcp(rayDirection), -rcp(FLT_EPS), rcp(FLT_EPS));

    // Perform ray-slab intersection (component-wise).
    float3 t0 = boxMin * rayDirInv - (rayOrigin * rayDirInv);
    float3 t1 = boxMax * rayDirInv - (rayOrigin * rayDirInv);

    // Find the closest/farthest distance (component-wise).
    float3 tSlabEntr = min(t0, t1);
    float3 tSlabExit = max(t0, t1);

    // Find the farthest entry and the nearest exit.
    tEntr = Max3(tSlabEntr.x, tSlabEntr.y, tSlabEntr.z);
    tExit = Min3(tSlabExit.x, tSlabExit.y, tSlabExit.z);

    // Clamp to the range.
    tEntr = max(tEntr, tMin);
    tExit = min(tExit, tMax);

    return tEntr < tExit;
}

// This simplified version assume that we care about the result only when we are inside the box
float IntersectRayAABBSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax)
{
    float3 invDir = rcp(dir);

    // Find the ray intersection with box plane
    float3 rbmin = (boxMin - start) * invDir;
    float3 rbmax = (boxMax - start) * invDir;

    float3 rbminmax = float3((dir.x > 0.0) ? rbmax.x : rbmin.x, (dir.y > 0.0) ? rbmax.y : rbmin.y, (dir.z > 0.0) ? rbmax.z : rbmin.z);

    return min(min(rbminmax.x, rbminmax.y), rbminmax.z);
}

// Assume Sphere is at the origin (i.e start = position - spherePosition)
bool IntersectRaySphere(float3 start, float3 dir, float radius, out float2 intersections)
{
    float a = dot(dir, dir);
    float b = dot(dir, start) * 2.0;
    float c = dot(start, start) - radius * radius;

    return SolveQuadraticEquation(a, b, c, intersections);
}

// This simplified version assume that we care about the result only when we are inside the sphere
// Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized
// Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
float IntersectRaySphereSimple(float3 start, float3 dir, float radius)
{
    float b = dot(dir, start) * 2.0;
    float c = dot(start, start) - radius * radius;
    float discriminant = b * b - 4.0 * c;

    return abs(sqrt(discriminant) - b) * 0.5;
}

float3 IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planeOrigin, float3 planeNormal)
{
    float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection);
    return rayOrigin + rayDirection * dist;
}

// Same as above but return intersection distance and true / false if the ray hit/miss
bool IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planePosition, float3 planeNormal, out float t)
{
    bool res = false;
    t = -1.0;

    float denom = dot(planeNormal, rayDirection);
    if (abs(denom) > 1e-5)
    {
        float3 d = planePosition - rayOrigin;
        t = dot(d, planeNormal) / denom;
        res = (t >= 0);
    }

    return res;
}

// Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y).
// Returns parametric distances 'tEntr' and 'tExit' along the ray,
// subject to constraints 'tMin' and 'tMax'.
bool IntersectRayCone(float3 rayOrigin,  float3 rayDirection,
                      float3 coneOrigin, float3 coneDirection,
                      float3 coneAxisX,  float3 coneAxisY,
                      float tMin, float tMax,
                      out float tEntr, out float tExit)
{
    // Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis.
    float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection);

    float3 o = mul(rotMat, rayOrigin - coneOrigin);
    float3 d = mul(rotMat, rayDirection);

    // Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0.
    // Cone axes are premultiplied with (h/r).
    // Set up the quadratic equation: a*t^2 + b*t + c = 0.
    float a = d.x * d.x + d.y * d.y - d.z * d.z;
    float b = o.x * d.x + o.y * d.y - o.z * d.z;
    float c = o.x * o.x + o.y * o.y - o.z * o.z;

    float2 roots;

    // Check whether we have at least 1 root.
    bool hit = SolveQuadraticEquation(a, 2 * b, c, roots);

    tEntr = roots.x;
    tExit = roots.y;
    float3 pEntr = o + tEntr * d;
    float3 pExit = o + tExit * d;

    // Clip the negative cone.
    bool pEntrNeg = pEntr.z < 0;
    bool pExitNeg = pExit.z < 0;
    if (pEntrNeg && pExitNeg) { hit = false; }
    if (pEntrNeg) { tEntr = tExit; tExit = tMax; }
    if (pExitNeg) { tExit = tEntr; tEntr = tMin; }

    // Clamp using the values passed into the function.
    tEntr = clamp(tEntr, tMin, tMax);
    tExit = clamp(tExit, tMin, tMax);

    // Check for grazing intersections.
    if (tEntr == tExit) { hit = false; }

    return hit;
}

bool IntersectSphereAABB(float3 position, float radius, float3 aabbMin, float3 aabbMax)
{
  float x = max(aabbMin.x, min(position.x, aabbMax.x));
  float y = max(aabbMin.y, min(position.y, aabbMax.y));
  float z = max(aabbMin.z, min(position.z, aabbMax.z));
  float distance2 = ((x - position.x) * (x - position.x) + (y - position.y) * (y - position.y) + (z - position.z) * (z - position.z));
  return distance2 < radius * radius;
}

//-----------------------------------------------------------------------------
// Miscellaneous functions
//-----------------------------------------------------------------------------

// Box is AABB
float DistancePointBox(float3 position, float3 boxMin, float3 boxMax)
{
    return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0)));
}

float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal)
{
    return position - (dot(position - planePosition, planeNormal) * planeNormal);
}

// Plane equation: {(a, b, c) = N, d = -dot(N, P)}.
// Returns the distance from the plane to the point 'p' along the normal.
// Positive -> in front (above), negative -> behind (below).
float DistanceFromPlane(float3 p, float4 plane)
{
    return dot(float4(p, 1.0), plane);
}

// Returns 'true' if the triangle is outside of the frustum.
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
{
    bool outside = false;

    for (int i = 0; i < numPlanes; i++)
    {
        // If all 3 points are behind any of the planes, we cull.
        outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]),
                                  DistanceFromPlane(p1, frustumPlanes[i]),
                                  DistanceFromPlane(p2, frustumPlanes[i])) < epsilon;
    }

    return outside;
}

// Returns 'true' if the edge of the triangle is outside of the frustum.
// The edges are defined s.t. they are on the opposite side of the point with the given index.
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
//output packing:
// x,y,z - one component per triangle edge, true if outside, false otherwise
// w - true if entire triangle is outside of at least 1 plane of the frustum, false otherwise
bool4 CullFullTriangleAndEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
{
    bool4 edgesOutsideXYZ_triangleOutsideW = false;

    for (int i = 0; i < numPlanes; i++)
    {
        bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon,
                                    DistanceFromPlane(p1, frustumPlanes[i]) < epsilon,
                                    DistanceFromPlane(p2, frustumPlanes[i]) < epsilon);

        bool3 edgesOutside;
            // If both points of the edge are behind any of the planes, we cull.
        edgesOutside.x = pointsOutside.y && pointsOutside.z;
        edgesOutside.y = pointsOutside.x && pointsOutside.z;
        edgesOutside.z = pointsOutside.x && pointsOutside.y;

        edgesOutsideXYZ_triangleOutsideW = bool4(edgesOutsideXYZ_triangleOutsideW.x || edgesOutside.x,
                                                 edgesOutsideXYZ_triangleOutsideW.y || edgesOutside.y,
                                                 edgesOutsideXYZ_triangleOutsideW.z || edgesOutside.z,
                                                 all(pointsOutside));
    }

    return edgesOutsideXYZ_triangleOutsideW;
}

// Returns 'true' if the edge of the triangle is outside of the frustum.
// The edges are defined s.t. they are on the opposite side of the point with the given index.
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
//output packing:
// x,y,z - one component per triangle edge, true if outside, false otherwise
bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
{
    return CullFullTriangleAndEdgesFrustum(p0, p1, p2, epsilon, frustumPlanes, numPlanes).xyz;
}

bool CullTriangleBackFaceView(float3 p0, float3 p1, float3 p2, float epsilon, float3 V, float winding)
{
    float3 edge1 = p1 - p0;
    float3 edge2 = p2 - p0;

    float3 N = cross(edge1, edge2);
    float  NdotV = dot(N, V) * winding;

    // Optimize:
    // NdotV / (length(N) * length(V)) < Epsilon
    // NdotV < Epsilon * length(N) * length(V)
    // NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V))
    // NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V))
    return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V));
}

// Returns 'true' if a triangle defined by 3 vertices is back-facing.
// 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle.
// 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1).
bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding)
{
    float3 V = viewPos - p0;
    return CullTriangleBackFaceView(p0, p1, p2, epsilon, V, winding);
}

#endif // UNITY_GEOMETRICTOOLS_INCLUDED