using System; using UnityEngine; namespace Cinemachine.Utility { /// Extensions to the Vector3 class, used by Cinemachine public static class UnityVectorExtensions { /// A useful Epsilon public const float Epsilon = 0.0001f; /// /// Checks if the Vector2 contains NaN for x or y. /// /// Vector2 to check for NaN /// True, if any components of the vector are NaN public static bool IsNaN(this Vector2 v) { return float.IsNaN(v.x) || float.IsNaN(v.y); } /// /// Checks if the Vector2 contains NaN for x or y. /// /// Vector2 to check for NaN /// True, if any components of the vector are NaN public static bool IsNaN(this Vector3 v) { return float.IsNaN(v.x) || float.IsNaN(v.y) || float.IsNaN(v.z); } /// /// Get the closest point on a line segment. /// /// A point in space /// Start of line segment /// End of line segment /// The interpolation parameter representing the point on the segment, with 0==s0, and 1==s1 public static float ClosestPointOnSegment(this Vector3 p, Vector3 s0, Vector3 s1) { Vector3 s = s1 - s0; float len2 = Vector3.SqrMagnitude(s); if (len2 < Epsilon) return 0; // degenrate segment return Mathf.Clamp01(Vector3.Dot(p - s0, s) / len2); } /// /// Get the closest point on a line segment. /// /// A point in space /// Start of line segment /// End of line segment /// The interpolation parameter representing the point on the segment, with 0==s0, and 1==s1 public static float ClosestPointOnSegment(this Vector2 p, Vector2 s0, Vector2 s1) { Vector2 s = s1 - s0; float len2 = Vector2.SqrMagnitude(s); if (len2 < Epsilon) return 0; // degenrate segment return Mathf.Clamp01(Vector2.Dot(p - s0, s) / len2); } /// /// Returns a non-normalized projection of the supplied vector onto a plane /// as described by its normal /// /// /// The normal that defines the plane. Must have a length of 1. /// The component of the vector that lies in the plane public static Vector3 ProjectOntoPlane(this Vector3 vector, Vector3 planeNormal) { return (vector - Vector3.Dot(vector, planeNormal) * planeNormal); } /// /// Normalized the vector onto the unit square instead of the unit circle /// /// The vector to normalize /// The normalized vector, or the zero vector if its magnitude /// was too small to normalize public static Vector2 SquareNormalize(this Vector2 v) { var d = Mathf.Max(Mathf.Abs(v.x), Mathf.Abs(v.y)); return d < Epsilon ? Vector2.zero : v / d; } /// /// Calculates the intersection point defined by line_1 [p1, p2], and line_2 [q1, q2]. /// /// line_1 is defined by (p1, p2) /// line_1 is defined by (p1, p2) /// line_2 is defined by (q1, q2) /// line_2 is defined by (q1, q2) /// If lines intersect at a single point, /// then this will hold the intersection point. /// Otherwise, it will be Vector2.positiveInfinity. /// /// 0 = no intersection, /// 1 = lines intersect, /// 2 = segments intersect, /// 3 = lines are colinear, segments do not touch, /// 4 = lines are colinear, segments touch (at one or at multiple points) /// public static int FindIntersection( in Vector2 p1, in Vector2 p2, in Vector2 q1, in Vector2 q2, out Vector2 intersection) { var p = p2 - p1; var q = q2 - q1; var pq = q1 - p1; var pXq = p.Cross(q); if (Mathf.Abs(pXq) < 0.00001f) { // The lines are parallel (or close enough to it) intersection = Vector2.positiveInfinity; if (Mathf.Abs(pq.Cross(p)) < 0.00001f) { // The lines are colinear. Do the segments touch? var dotPQ = Vector2.Dot(q, p); if (dotPQ > 0 && (p1 - q2).sqrMagnitude < 0.001f) { // q points to start of p intersection = q2; return 4; } if (dotPQ < 0 && (p2 - q2).sqrMagnitude < 0.001f) { // p and q point at the same point intersection = p2; return 4; } var dot = Vector2.Dot(pq, p); if (0 <= dot && dot <= Vector2.Dot(p, p)) { if (dot < 0.0001f) { if (dotPQ <= 0 && (p1 - q1).sqrMagnitude < 0.001f) intersection = p1; // p and q start at the same point and point away } else if (dotPQ > 0 && (p2 - q1).sqrMagnitude < 0.001f) intersection = p2; // p points at start of q return 4; // colinear segments touch } dot = Vector2.Dot(p1 - q1, q); if (0 <= dot && dot <= Vector2.Dot(q, q)) return 4; // colinear segments overlap return 3; // colinear segments don't touch } return 0; // the lines are parallel and not colinear } var t = pq.Cross(q) / pXq; intersection = p1 + t * p; var u = pq.Cross(p) / pXq; if (0 <= t && t <= 1 && 0 <= u && u <= 1) return 2; // segments touch return 1; // segments don't touch but lines intersect } private static float Cross(this Vector2 v1, Vector2 v2) { return (v1.x * v2.y) - (v1.y * v2.x); } /// /// Component-wise absolute value /// /// Input vector /// Component-wise absolute value of the input vector public static Vector2 Abs(this Vector2 v) { return new Vector2(Mathf.Abs(v.x), Mathf.Abs(v.y)); } /// /// Component-wise absolute value /// /// Input vector /// Component-wise absolute value of the input vector public static Vector3 Abs(this Vector3 v) { return new Vector3(Mathf.Abs(v.x), Mathf.Abs(v.y), Mathf.Abs(v.z)); } /// /// Checks whether the vector components are the same value. /// /// Vector to check /// True, if the vector elements are the same. False, otherwise. public static bool IsUniform(this Vector2 v) { return Math.Abs(v.x - v.y) < Epsilon; } /// /// Checks whether the vector components are the same value. /// /// Vector to check /// True, if the vector elements are the same. False, otherwise. public static bool IsUniform(this Vector3 v) { return Math.Abs(v.x - v.y) < Epsilon && Math.Abs(v.x - v.z) < Epsilon; } /// Is the vector within Epsilon of zero length? /// /// True if the square magnitude of the vector is within Epsilon of zero public static bool AlmostZero(this Vector3 v) { return v.sqrMagnitude < (Epsilon * Epsilon); } /// Much more stable for small angles than Unity's native implementation /// The first vector /// The second vector /// Angle between the vectors, in degrees public static float Angle(Vector3 v1, Vector3 v2) { #if false // Maybe this version is better? to test.... float a = v1.magnitude; v1 *= v2.magnitude; v2 *= a; return Mathf.Atan2((v1 - v2).magnitude, (v1 + v2).magnitude) * Mathf.Rad2Deg * 2; #else v1.Normalize(); v2.Normalize(); return Mathf.Atan2((v1 - v2).magnitude, (v1 + v2).magnitude) * Mathf.Rad2Deg * 2; #endif } /// Much more stable for small angles than Unity's native implementation /// The first vector /// The second vector /// Definition of up (used to determine the sign) /// Signed angle between the vectors, in degrees public static float SignedAngle(Vector3 v1, Vector3 v2, Vector3 up) { float angle = Angle(v1, v2); if (Mathf.Sign(Vector3.Dot(up, Vector3.Cross(v1, v2))) < 0) return -angle; return angle; } /// Much more stable for small angles than Unity's native implementation /// The first vector /// The second vector /// Definition of up (used to determine the sign) /// Rotation between the vectors public static Quaternion SafeFromToRotation(Vector3 v1, Vector3 v2, Vector3 up) { var axis = Vector3.Cross(v1, v2); if (axis.AlmostZero()) axis = up; // in case they are pointing in opposite directions return Quaternion.AngleAxis(Angle(v1, v2), axis); } /// This is a slerp that mimics a camera operator's movement in that /// it chooses a path that avoids the lower hemisphere, as defined by /// the up param /// First direction /// Second direction /// Interpolation amoun t /// Defines the up direction /// Interpolated vector public static Vector3 SlerpWithReferenceUp( Vector3 vA, Vector3 vB, float t, Vector3 up) { float dA = vA.magnitude; float dB = vB.magnitude; if (dA < Epsilon || dB < Epsilon) return Vector3.Lerp(vA, vB, t); Vector3 dirA = vA / dA; Vector3 dirB = vB / dB; Quaternion qA = Quaternion.LookRotation(dirA, up); Quaternion qB = Quaternion.LookRotation(dirB, up); Quaternion q = UnityQuaternionExtensions.SlerpWithReferenceUp(qA, qB, t, up); Vector3 dir = q * Vector3.forward; return dir * Mathf.Lerp(dA, dB, t); } } /// Extensions to the Quaternion class, usen in various places by Cinemachine public static class UnityQuaternionExtensions { /// This is a slerp that mimics a camera operator's movement in that /// it chooses a path that avoids the lower hemisphere, as defined by /// the up param /// First direction /// Second direction /// Interpolation amount /// Defines the up direction. Must have a length of 1. /// Interpolated quaternion public static Quaternion SlerpWithReferenceUp( Quaternion qA, Quaternion qB, float t, Vector3 up) { var dirA = (qA * Vector3.forward).ProjectOntoPlane(up); var dirB = (qB * Vector3.forward).ProjectOntoPlane(up); if (dirA.AlmostZero() || dirB.AlmostZero()) return Quaternion.Slerp(qA, qB, t); // Work on the plane, in eulers var qBase = Quaternion.LookRotation(dirA, up); var qBaseInv = Quaternion.Inverse(qBase); Quaternion qA1 = qBaseInv * qA; Quaternion qB1 = qBaseInv * qB; var eA = qA1.eulerAngles; var eB = qB1.eulerAngles; return qBase * Quaternion.Euler( Mathf.LerpAngle(eA.x, eB.x, t), Mathf.LerpAngle(eA.y, eB.y, t), Mathf.LerpAngle(eA.z, eB.z, t)); } /// Normalize a quaternion /// /// The normalized quaternion. Unit length is 1. public static Quaternion Normalized(this Quaternion q) { Vector4 v = new Vector4(q.x, q.y, q.z, q.w).normalized; return new Quaternion(v.x, v.y, v.z, v.w); } /// /// Get the rotations, first about world up, then about (travelling) local right, /// necessary to align the quaternion's forward with the target direction. /// This represents the tripod head movement needed to look at the target. /// This formulation makes it easy to interpolate without introducing spurious roll. /// /// /// The worldspace target direction in which we want to look /// Which way is up. Must have a length of 1. /// Vector2.y is rotation about worldUp, and Vector2.x is second rotation, /// about local right. public static Vector2 GetCameraRotationToTarget( this Quaternion orient, Vector3 lookAtDir, Vector3 worldUp) { if (lookAtDir.AlmostZero()) return Vector2.zero; // degenerate // Work in local space Quaternion toLocal = Quaternion.Inverse(orient); Vector3 up = toLocal * worldUp; lookAtDir = toLocal * lookAtDir; // Align yaw based on world up float angleH = 0; { Vector3 targetDirH = lookAtDir.ProjectOntoPlane(up); if (!targetDirH.AlmostZero()) { Vector3 currentDirH = Vector3.forward.ProjectOntoPlane(up); if (currentDirH.AlmostZero()) { // We're looking at the north or south pole if (Vector3.Dot(currentDirH, up) > 0) currentDirH = Vector3.down.ProjectOntoPlane(up); else currentDirH = Vector3.up.ProjectOntoPlane(up); } angleH = UnityVectorExtensions.SignedAngle(currentDirH, targetDirH, up); } } Quaternion q = Quaternion.AngleAxis(angleH, up); // Get local vertical angle float angleV = UnityVectorExtensions.SignedAngle( q * Vector3.forward, lookAtDir, q * Vector3.right); return new Vector2(angleV, angleH); } /// /// Apply rotations, first about world up, then about (travelling) local right. /// rot.y is rotation about worldUp, and rot.x is second rotation, about local right. /// /// /// Vector2.y is rotation about worldUp, and Vector2.x is second rotation, /// about local right. /// Which way is up /// Result rotation after the input is applied to the input quaternion public static Quaternion ApplyCameraRotation( this Quaternion orient, Vector2 rot, Vector3 worldUp) { Quaternion q = Quaternion.AngleAxis(rot.x, Vector3.right); return (Quaternion.AngleAxis(rot.y, worldUp) * orient) * q; } } /// Ad-hoc xxtentions to the Rect structure, used by Cinemachine public static class UnityRectExtensions { /// Inflate a rect /// /// x and y are added/subtracted fto/from the edges of /// the rect, inflating it in all directions /// The inflated rect public static Rect Inflated(this Rect r, Vector2 delta) { return new Rect( r.xMin - delta.x, r.yMin - delta.y, r.width + delta.x * 2, r.height + delta.y * 2); } } }