using UnityEngine;
namespace Cinemachine.Utility
{
///
/// A collection of utilities relating to Bezier splines
///
public static class SplineHelpers
{
/// Compute the value of a 4-point 3-dimensional bezier spline
/// How far along the spline (0...1)
/// First point
/// First tangent
/// Second point
/// Second tangent
/// The spline value at t
public static Vector3 Bezier3(
float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
{
t = Mathf.Clamp01(t);
float d = 1f - t;
return d * d * d * p0 + 3f * d * d * t * p1
+ 3f * d * t * t * p2 + t * t * t * p3;
}
/// Compute the tangent of a 4-point 3-dimensional bezier spline
/// How far along the spline (0...1)
/// First point
/// First tangent
/// Second point
/// Second tangent
/// The spline tangent at t
public static Vector3 BezierTangent3(
float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
{
t = Mathf.Clamp01(t);
return (-3f * p0 + 9f * p1 - 9f * p2 + 3f * p3) * (t * t)
+ (6f * p0 - 12f * p1 + 6f * p2) * t
- 3f * p0 + 3f * p1;
}
/// Compute the value of a 4-point 1-dimensional bezier spline
/// How far along the spline (0...1)
/// First point
/// First tangent
/// Second point
/// Second tangent
/// The spline value at t
public static float Bezier1(float t, float p0, float p1, float p2, float p3)
{
t = Mathf.Clamp01(t);
float d = 1f - t;
return d * d * d * p0 + 3f * d * d * t * p1
+ 3f * d * t * t * p2 + t * t * t * p3;
}
/// Compute the tangent of a 4-point 1-dimensional bezier spline
/// How far along the spline (0...1)
/// First point
/// First tangent
/// Second point
/// Second tangent
/// The spline tangent at t
public static float BezierTangent1(
float t, float p0, float p1, float p2, float p3)
{
t = Mathf.Clamp01(t);
return (-3f * p0 + 9f * p1 - 9f * p2 + 3f * p3) * t * t
+ (6f * p0 - 12f * p1 + 6f * p2) * t
- 3f * p0 + 3f * p1;
}
///
/// Use the Thomas algorithm to compute smooth tangent values for a spline.
/// Resultant tangents guarantee second-order smoothness of the curve.
///
/// The knots defining the curve
/// Output buffer for the first control points (1 per knot)
/// Output buffer for the second control points (1 per knot)
public static void ComputeSmoothControlPoints(
ref Vector4[] knot, ref Vector4[] ctrl1, ref Vector4[] ctrl2)
{
int numPoints = knot.Length;
if (numPoints <= 2)
{
if (numPoints == 2)
{
ctrl1[0] = Vector4.Lerp(knot[0], knot[1], 0.33333f);
ctrl2[0] = Vector4.Lerp(knot[0], knot[1], 0.66666f);
}
else if (numPoints == 1)
ctrl1[0] = ctrl2[0] = knot[0];
return;
}
var a = new float[numPoints];
var b = new float[numPoints];
var c = new float[numPoints];
var r = new float[numPoints];
for (int axis = 0; axis < 4; ++axis)
{
int n = numPoints - 1;
// Linear into the first segment
a[0] = 0;
b[0] = 2;
c[0] = 1;
r[0] = knot[0][axis] + 2 * knot[1][axis];
// Internal segments
for (int i = 1; i < n - 1; ++i)
{
a[i] = 1;
b[i] = 4;
c[i] = 1;
r[i] = 4 * knot[i][axis] + 2 * knot[i+1][axis];
}
// Linear out of the last segment
a[n - 1] = 2;
b[n - 1] = 7;
c[n - 1] = 0;
r[n - 1] = 8 * knot[n - 1][axis] + knot[n][axis];
// Solve with Thomas algorithm
for (int i = 1; i < n; ++i)
{
float m = a[i] / b[i-1];
b[i] = b[i] - m * c[i-1];
r[i] = r[i] - m * r[i-1];
}
// Compute ctrl1
ctrl1[n-1][axis] = r[n-1] / b[n-1];
for (int i = n - 2; i >= 0; --i)
ctrl1[i][axis] = (r[i] - c[i] * ctrl1[i + 1][axis]) / b[i];
// Compute ctrl2 from ctrl1
for (int i = 0; i < n; i++)
ctrl2[i][axis] = 2 * knot[i + 1][axis] - ctrl1[i + 1][axis];
ctrl2[n - 1][axis] = 0.5f * (knot[n][axis] + ctrl1[n - 1][axis]);
}
}
///
/// Use the Thomas algorithm to compute smooth tangent values for a spline.
/// This method will assume that the spline is looped (i.e. that the last knot is followed by the first).
/// Resultant tangents guarantee second-order smoothness of the curve.
///
/// The knots defining the curve
/// Output buffer for the first control points (1 per knot)
/// Output buffer for the second control points (1 per knot)
public static void ComputeSmoothControlPointsLooped(
ref Vector4[] knot, ref Vector4[] ctrl1, ref Vector4[] ctrl2)
{
int numPoints = knot.Length;
if (numPoints < 2)
{
if (numPoints == 1)
ctrl1[0] = ctrl2[0] = knot[0];
return;
}
int margin = Mathf.Min(4, numPoints-1);
Vector4[] knotLooped = new Vector4[numPoints + 2 * margin];
Vector4[] ctrl1Looped = new Vector4[numPoints + 2 * margin];
Vector4[] ctrl2Looped = new Vector4[numPoints + 2 * margin];
for (int i = 0; i < margin; ++i)
{
knotLooped[i] = knot[numPoints-(margin-i)];
knotLooped[numPoints+margin+i] = knot[i];
}
for (int i = 0; i < numPoints; ++i)
knotLooped[i + margin] = knot[i];
ComputeSmoothControlPoints(ref knotLooped, ref ctrl1Looped, ref ctrl2Looped);
for (int i = 0; i < numPoints; ++i)
{
ctrl1[i] = ctrl1Looped[i + margin];
ctrl2[i] = ctrl2Looped[i + margin];
}
}
}
}