using System; using Unity.Burst; using Unity.Collections; using Unity.Jobs; using Unity.Mathematics; namespace UnityEngine.Rendering.Universal { [BurstCompile(FloatMode = FloatMode.Default, DisableSafetyChecks = true, OptimizeFor = OptimizeFor.Performance)] struct TilingJob : IJobFor { [ReadOnly] public NativeArray lights; [ReadOnly] public NativeArray reflectionProbes; [NativeDisableParallelForRestriction] public NativeArray tileRanges; public int itemsPerTile; public int rangesPerItem; public Fixed2 worldToViews; public float2 tileScale; public float2 tileScaleInv; public Fixed2 viewPlaneBottoms; public Fixed2 viewPlaneTops; public Fixed2 viewToViewportScaleBiases; public int2 tileCount; public float near; public bool isOrthographic; InclusiveRange m_TileYRange; int m_Offset; int m_ViewIndex; float2 m_CenterOffset; public void Execute(int jobIndex) { var index = jobIndex % itemsPerTile; m_ViewIndex = jobIndex / itemsPerTile; m_Offset = jobIndex * rangesPerItem; m_TileYRange = new InclusiveRange(short.MaxValue, short.MinValue); for (var i = 0; i < rangesPerItem; i++) { tileRanges[m_Offset + i] = new InclusiveRange(short.MaxValue, short.MinValue); } if (index < lights.Length) { if (isOrthographic) { TileLightOrthographic(index); } else { TileLight(index); } } else { TileReflectionProbe(index); } } void TileLight(int lightIndex) { var light = lights[lightIndex]; var lightToWorld = (float4x4)light.localToWorldMatrix; var lightPositionVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz; lightPositionVS.z *= -1; if (lightPositionVS.z >= near) ExpandY(lightPositionVS); var lightDirectionVS = math.normalize(math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz); lightDirectionVS.z *= -1; var halfAngle = math.radians(light.spotAngle * 0.5f); var range = light.range; var rangesq = square(range); var cosHalfAngle = math.cos(halfAngle); var coneHeight = cosHalfAngle * range; // Radius of circle formed by intersection of sphere and near plane. // Found using Pythagoras with a right triangle formed by three points: // (a) light position // (b) light position projected to near plane // (c) a point on the near plane at a distance `range` from the light position // (i.e. lies both on the sphere and the near plane) // Thus the hypotenuse is formed by (a) and (c) with length `range`, and the known side is formed // by (a) and (b) with length equal to the distance between the near plane and the light position. // The remaining unknown side is formed by (b) and (c) with length equal to the radius of the circle. // m_ClipCircleRadius = sqrt(sq(light.range) - sq(m_Near - m_LightPosition.z)); var sphereClipRadius = math.sqrt(rangesq - square(near - lightPositionVS.z)); // Assumes a point on the sphere, i.e. at distance `range` from the light position. // If spot light, we check the angle between the direction vector from the light position and the light direction vector. // Note that division by range is to normalize the vector, as we know that the resulting vector will have length `range`. bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point || math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= cosHalfAngle; // Project light sphere onto YZ plane, find the horizon points, and re-construct view space position of found points. // CalculateSphereYBounds(lightPositionVS, range, near, sphereClipRadius, out var sphereBoundY0, out var sphereBoundY1); GetSphereHorizon(lightPositionVS.yz, range, near, sphereClipRadius, out var sphereBoundYZ0, out var sphereBoundYZ1); var sphereBoundY0 = math.float3(lightPositionVS.x, sphereBoundYZ0); var sphereBoundY1 = math.float3(lightPositionVS.x, sphereBoundYZ1); if (SpherePointIsValid(sphereBoundY0)) ExpandY(sphereBoundY0); if (SpherePointIsValid(sphereBoundY1)) ExpandY(sphereBoundY1); // Project light sphere onto XZ plane, find the horizon points, and re-construct view space position of found points. GetSphereHorizon(lightPositionVS.xz, range, near, sphereClipRadius, out var sphereBoundXZ0, out var sphereBoundXZ1); var sphereBoundX0 = math.float3(sphereBoundXZ0.x, lightPositionVS.y, sphereBoundXZ0.y); var sphereBoundX1 = math.float3(sphereBoundXZ1.x, lightPositionVS.y, sphereBoundXZ1.y); if (SpherePointIsValid(sphereBoundX0)) ExpandY(sphereBoundX0); if (SpherePointIsValid(sphereBoundX1)) ExpandY(sphereBoundX1); if (light.lightType == LightType.Spot) { // Cone base var baseRadius = math.sqrt(range * range - coneHeight * coneHeight); var baseCenter = lightPositionVS + lightDirectionVS * coneHeight; // Project cone base (a circle) into the YZ plane, find the horizon points, and re-construct view space position of found points. // When projecting a circle to a plane, it becomes an ellipse where the major axis is parallel to the line // of intersection of the projection plane and the circle plane. We can get this by taking the cross product // of the two plane normals, as the line of intersection will have to be a vector in both planes, and thus // orthogonal to both normals. // If the two plane normals are parallel, the cross product would return 0. In that case, the circle will // project to a line segment, so we pick a vector in the plane pointing in the direction we're interested // in finding horizon points in. var baseUY = math.abs(math.abs(lightDirectionVS.x) - 1) < 1e-6f ? math.float3(0, 1, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(1, 0, 0))); var baseVY = math.cross(lightDirectionVS, baseUY); GetProjectedCircleHorizon(baseCenter.yz, baseRadius, baseUY.yz, baseVY.yz, out var baseY1UV, out var baseY2UV); var baseY1 = baseCenter + baseY1UV.x * baseUY + baseY1UV.y * baseVY; var baseY2 = baseCenter + baseY2UV.x * baseUY + baseY2UV.y * baseVY; if (baseY1.z >= near) ExpandY(baseY1); if (baseY2.z >= near) ExpandY(baseY2); // Project cone base into the XZ plane, find the horizon points, and re-construct view space position of found points. // See comment for YZ plane for details. var baseUX = math.abs(math.abs(lightDirectionVS.y) - 1) < 1e-6f ? math.float3(1, 0, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(0, 1, 0))); var baseVX = math.cross(lightDirectionVS, baseUX); GetProjectedCircleHorizon(baseCenter.xz, baseRadius, baseUX.xz, baseVX.xz, out var baseX1UV, out var baseX2UV); var baseX1 = baseCenter + baseX1UV.x * baseUX + baseX1UV.y * baseVX; var baseX2 = baseCenter + baseX2UV.x * baseUX + baseX2UV.y * baseVX; if (baseX1.z >= near) ExpandY(baseX1); if (baseX2.z >= near) ExpandY(baseX2); // Handle base circle clipping by intersecting it with the near-plane if needed. if (GetCircleClipPoints(baseCenter, lightDirectionVS, baseRadius, near, out var baseClip0, out var baseClip1)) { ExpandY(baseClip0); ExpandY(baseClip1); } bool ConicPointIsValid(float3 p) => math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= 0 && math.dot(p - lightPositionVS, lightDirectionVS) <= coneHeight; // Calculate Z bounds of cone and check if it's overlapping with the near plane. // From https://www.iquilezles.org/www/articles/diskbbox/diskbbox.htm var baseExtentZ = baseRadius * math.sqrt(1.0f - square(lightDirectionVS.z)); var coneIsClipping = near >= math.min(baseCenter.z - baseExtentZ, lightPositionVS.z) && near <= math.max(baseCenter.z + baseExtentZ, lightPositionVS.z); var coneU = math.cross(lightDirectionVS, lightPositionVS); // The cross product will be the 0-vector if the light-direction and camera-to-light-position vectors are parallel. // In that case, {1, 0, 0} is orthogonal to the light direction and we use that instead. coneU = math.csum(coneU) != 0f ? math.normalize(coneU) : math.float3(1, 0, 0); var coneV = math.cross(lightDirectionVS, coneU); if (coneIsClipping) { var r = baseRadius / coneHeight; // Find the Y bounds of the near-plane cone intersection, i.e. where y' = 0 var thetaY = FindNearConicTangentTheta(lightPositionVS.yz, lightDirectionVS.yz, r, coneU.yz, coneV.yz); var p0Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.x); var p1Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.y); if (ConicPointIsValid(p0Y)) ExpandY(p0Y); if (ConicPointIsValid(p1Y)) ExpandY(p1Y); // Find the X bounds of the near-plane cone intersection, i.e. where x' = 0 var thetaX = FindNearConicTangentTheta(lightPositionVS.xz, lightDirectionVS.xz, r, coneU.xz, coneV.xz); var p0X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.x); var p1X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.y); if (ConicPointIsValid(p0X)) ExpandY(p0X); if (ConicPointIsValid(p1X)) ExpandY(p1X); } // Calculate the lines making up the sides of the cone as seen from the camera. `l1` and `l2` form lines // from the light position. GetConeSideTangentPoints(lightPositionVS, lightDirectionVS, cosHalfAngle, baseRadius, coneHeight, range, coneU, coneV, out var l1, out var l2); { var planeNormal = math.float3(0, 1, viewPlaneBottoms[m_ViewIndex]); var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal); var l1x = lightPositionVS + l1 * l1t; if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x); } { var planeNormal = math.float3(0, 1, viewPlaneTops[m_ViewIndex]); var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal); var l1x = lightPositionVS + l1 * l1t; if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x); } m_TileYRange.Clamp(0, (short)(tileCount.y - 1)); // Calculate tile plane ranges for cone. for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++) { var planeRange = InclusiveRange.empty; // Y-position on the view plane (Z=1) var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y); var planeNormal = math.float3(0, 1, -planeY); // Intersect lines with y-plane and clip if needed. var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal); var l1x = lightPositionVS + l1 * l1t; if (l1t >= 0 && l1t <= 1 && l1x.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(l1x).x, 0, tileCount.x - 1)); var l2t = math.dot(-lightPositionVS, planeNormal) / math.dot(l2, planeNormal); var l2x = lightPositionVS + l2 * l2t; if (l2t >= 0 && l2t <= 1 && l2x.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(l2x).x, 0, tileCount.x - 1)); if (IntersectCircleYPlane(planeY, baseCenter, lightDirectionVS, baseUY, baseVY, baseRadius, out var circleTile0, out var circleTile1)) { if (circleTile0.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(circleTile0).x, 0, tileCount.x - 1)); if (circleTile1.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(circleTile1).x, 0, tileCount.x - 1)); } if (coneIsClipping) { var y = planeY * near; var r = baseRadius / coneHeight; var theta = FindNearConicYTheta(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, y); var p0 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.x).x, y, near); var p1 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.y).x, y, near); if (ConicPointIsValid(p0)) planeRange.Expand((short)math.clamp(ViewToTileSpace(p0).x, 0, tileCount.x - 1)); if (ConicPointIsValid(p1)) planeRange.Expand((short)math.clamp(ViewToTileSpace(p1).x, 0, tileCount.x - 1)); } // Write to tile ranges above and below the plane. Note that at `m_Offset` we store Y-range. var tileIndex = m_Offset + 1 + planeIndex; tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange); tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange); } } m_TileYRange.Clamp(0, (short)(tileCount.y - 1)); // Calculate tile plane ranges for sphere. for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++) { var planeRange = InclusiveRange.empty; var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y); GetSphereYPlaneHorizon(lightPositionVS, range, near, sphereClipRadius, planeY, out var sphereTile0, out var sphereTile1); if (SpherePointIsValid(sphereTile0)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile0).x, 0, tileCount.x - 1)); if (SpherePointIsValid(sphereTile1)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile1).x, 0, tileCount.x - 1)); var tileIndex = m_Offset + 1 + planeIndex; tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange); tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange); } tileRanges[m_Offset] = m_TileYRange; } void TileLightOrthographic(int lightIndex) { var light = lights[lightIndex]; var lightToWorld = (float4x4)light.localToWorldMatrix; var lightPosVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz; lightPosVS.z *= -1; ExpandOrthographic(lightPosVS); var lightDirVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz; lightDirVS.z *= -1; lightDirVS = math.normalize(lightDirVS); var halfAngle = math.radians(light.spotAngle * 0.5f); var range = light.range; var rangeSq = square(range); var cosHalfAngle = math.cos(halfAngle); var coneHeight = cosHalfAngle * range; var coneHeightSq = square(coneHeight); var coneHeightInv = 1f / coneHeight; var coneHeightInvSq = square(coneHeightInv); bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point || math.dot(math.normalize(p - lightPosVS), lightDirVS) >= cosHalfAngle; var sphereBoundY0 = lightPosVS - math.float3(0, range, 0); var sphereBoundY1 = lightPosVS + math.float3(0, range, 0); var sphereBoundX0 = lightPosVS - math.float3(range, 0, 0); var sphereBoundX1 = lightPosVS + math.float3(range, 0, 0); if (SpherePointIsValid(sphereBoundY0)) ExpandOrthographic(sphereBoundY0); if (SpherePointIsValid(sphereBoundY1)) ExpandOrthographic(sphereBoundY1); if (SpherePointIsValid(sphereBoundX0)) ExpandOrthographic(sphereBoundX0); if (SpherePointIsValid(sphereBoundX1)) ExpandOrthographic(sphereBoundX1); var circleCenter = lightPosVS + lightDirVS * coneHeight; var circleRadius = math.sqrt(rangeSq - coneHeightSq); var circleRadiusSq = square(circleRadius); var circleUp = math.normalize(math.float3(0, 1, 0) - lightDirVS * lightDirVS.y); var circleRight = math.normalize(math.float3(1, 0, 0) - lightDirVS * lightDirVS.x); var circleBoundY0 = circleCenter - circleUp * circleRadius; var circleBoundY1 = circleCenter + circleUp * circleRadius; if (light.lightType == LightType.Spot) { var circleBoundX0 = circleCenter - circleRight * circleRadius; var circleBoundX1 = circleCenter + circleRight * circleRadius; ExpandOrthographic(circleBoundY0); ExpandOrthographic(circleBoundY1); ExpandOrthographic(circleBoundX0); ExpandOrthographic(circleBoundX1); } m_TileYRange.Clamp(0, (short)(tileCount.y - 1)); // Find two lines in screen-space for the cone if the light is a spot. float coneDir0X = 0, coneDir0YInv = 0, coneDir1X = 0, coneDir1YInv = 0; if (light.lightType == LightType.Spot) { // Distance from light position to and radius of sphere fitted to the end of the cone. var sphereDistance = coneHeight + circleRadiusSq * coneHeightInv; var sphereRadius = math.sqrt(square(circleRadiusSq) * coneHeightInvSq + circleRadiusSq); var directionXYSqInv = math.rcp(math.lengthsq(lightDirVS.xy)); var polarIntersection = -circleRadiusSq * coneHeightInv * directionXYSqInv * lightDirVS.xy; var polarDir = math.sqrt((square(sphereRadius) - math.lengthsq(polarIntersection)) * directionXYSqInv) * math.float2(lightDirVS.y, -lightDirVS.x); var conePBase = lightPosVS.xy + sphereDistance * lightDirVS.xy + polarIntersection; var coneP0 = conePBase - polarDir; var coneP1 = conePBase + polarDir; coneDir0X = coneP0.x - lightPosVS.x; coneDir0YInv = math.rcp(coneP0.y - lightPosVS.y); coneDir1X = coneP1.x - lightPosVS.x; coneDir1YInv = math.rcp(coneP1.y - lightPosVS.y); } // Tile plane ranges for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++) { var planeRange = InclusiveRange.empty; // Sphere var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y); var sphereX = math.sqrt(rangeSq - square(planeY - lightPosVS.y)); var sphereX0 = math.float3(lightPosVS.x - sphereX, planeY, lightPosVS.z); var sphereX1 = math.float3(lightPosVS.x + sphereX, planeY, lightPosVS.z); if (SpherePointIsValid(sphereX0)) { ExpandRangeOrthographic(ref planeRange, sphereX0.x); } if (SpherePointIsValid(sphereX1)) { ExpandRangeOrthographic(ref planeRange, sphereX1.x); } if (light.lightType == LightType.Spot) { // Circle if (planeY >= circleBoundY0.y && planeY <= circleBoundY1.y) { var intersectionDistance = (planeY - circleCenter.y) / circleUp.y; var closestPointX = circleCenter.x + intersectionDistance * circleUp.x; var intersectionDirX = -lightDirVS.z / math.length(math.float3(-lightDirVS.z, 0, lightDirVS.x)); var sideDistance = math.sqrt(square(circleRadius) - square(intersectionDistance)); var circleX0 = closestPointX - sideDistance * intersectionDirX; var circleX1 = closestPointX + sideDistance * intersectionDirX; ExpandRangeOrthographic(ref planeRange, circleX0); ExpandRangeOrthographic(ref planeRange, circleX1); } // Cone var deltaY = planeY - lightPosVS.y; var coneT0 = deltaY * coneDir0YInv; var coneT1 = deltaY * coneDir1YInv; if (coneT0 >= 0 && coneT0 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT0 * coneDir0X); } if (coneT1 >= 0 && coneT1 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT1 * coneDir1X); } } var tileIndex = m_Offset + 1 + planeIndex; tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange); tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange); } tileRanges[m_Offset] = m_TileYRange; } static readonly float3[] k_CubePoints = { new(-1, -1, -1), new(-1, -1, +1), new(-1, +1, -1), new(-1, +1, +1), new(+1, -1, -1), new(+1, -1, +1), new(+1, +1, -1), new(+1, +1, +1), }; // Each item represents 3 lines, with x being the start index and yzw the end indices. static readonly int4[] k_CubeLineIndices = { // (-1, -1, -1) -> {(+1, -1, -1), (-1, +1, -1), (-1, -1, +1)} new(0, 4, 2, 1), // (-1, +1, +1) -> {(+1, +1, +1), (-1, -1, +1), (-1, +1, -1)} new(3, 7, 1, 2), // (+1, -1, +1) -> {(-1, -1, +1), (+1, +1, +1), (+1, -1, -1)} new(5, 1, 7, 4), // (+1, +1, -1) -> {(-1, +1, -1), (+1, -1, -1), (+1, +1, +1)} new(6, 2, 4, 7), }; void TileReflectionProbe(int index) { // The algorithm used here works by clipping all the lines of the cube against the near-plane, and then // projects the resulting points to the view plane. These points are then used to construct a 2D convex // hull, which we can iterate linearly to get the lines on screen making up the cube. var reflectionProbe = reflectionProbes[index - lights.Length]; var centerWS = (float3)reflectionProbe.bounds.center; var extentsWS = (float3)reflectionProbe.bounds.extents; // The vertices of the cube in view space. var points = new NativeArray(k_CubePoints.Length, Allocator.Temp); // This is initially filled with just the cube vertices that lie in front of the near plane. var clippedPoints = new NativeArray(k_CubePoints.Length + k_CubeLineIndices.Length * 3, Allocator.Temp); var clippedPointsCount = 0; var leftmostIndex = 0; for (var i = 0; i < k_CubePoints.Length; i++) { var point = math.mul(worldToViews[m_ViewIndex], math.float4(centerWS + extentsWS * k_CubePoints[i], 1)).xyz; point.z *= -1; points[i] = point; if (point.z >= near) { var clippedPoint = isOrthographic ? point.xy : point.xy/point.z; var clippedIndex = clippedPointsCount++; clippedPoints[clippedIndex] = clippedPoint; if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex; } } // Clip the cube's line segments with the near plane, and add the new vertices to clippedPoints. Only lines // that are clipped will generate new vertices. for (var i = 0; i < k_CubeLineIndices.Length; i++) { var indices = k_CubeLineIndices[i]; var p0 = points[indices.x]; for (var j = 0; j < 3; j++) { var p1 = points[indices[j+1]]; // The entire line is in front of the near plane. if (p0.z < near && p1.z < near) continue; // Check whether the line needs clipping. if (p0.z < near || p1.z < near) { var d = (near - p0.z) / (p1.z - p0.z); var p = math.lerp(p0, p1, d); var clippedPoint = isOrthographic ? p.xy : p.xy/p.z; var clippedIndex = clippedPointsCount++; clippedPoints[clippedIndex] = clippedPoint; if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex; } } } // Construct the convex hull. It is formed by the line loop consisting of the points in the array. var hullPoints = new NativeArray(clippedPointsCount, Allocator.Temp); var hullPointsCount = 0; if (clippedPointsCount > 0) { // Start with the leftmost point, as that is guaranteed to be on the hull. var hullPointIndex = leftmostIndex; // Find the remaining hull points until we end up back at the leftmost point. do { var hullPoint = clippedPoints[hullPointIndex]; ExpandY(math.float3(hullPoint, 1)); hullPoints[hullPointsCount++] = hullPoint; // Find the endpoint resulting in the leftmost turning line. This line will be a part of the hull. var endpointIndex = 0; var endpointLine = clippedPoints[endpointIndex] - hullPoint; for (var i = 0; i < clippedPointsCount; i++) { var candidateLine = clippedPoints[i] - hullPoint; var det = math.determinant(math.float2x2(endpointLine, candidateLine)); // Check if point i lies on the left side of the line to the current endpoint, or if it lies // collinear to the current endpoint but farther away. if (endpointIndex == hullPointIndex || det > 0 || (det == 0.0f && math.lengthsq(candidateLine) > math.lengthsq(endpointLine))) { endpointIndex = i; endpointLine = candidateLine; } } hullPointIndex = endpointIndex; } while (hullPointIndex != leftmostIndex && hullPointsCount < clippedPointsCount); m_TileYRange.Clamp(0, (short)(tileCount.y - 1)); // Calculate tile plane ranges for sphere. for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++) { var planeRange = InclusiveRange.empty; var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y); for (var i = 0; i < hullPointsCount; i++) { var hp0 = hullPoints[i]; var hp1 = hullPoints[(i + 1) % hullPointsCount]; // planeY = hp0 + t * (hp1 - hp0) => planeY - hp0 = t * (hp1 - hp0) => (planeY - hp0) / (hp1 - hp0) = t var t = (planeY - hp0.y) / (hp1.y - hp0.y); if (t < 0 || t > 1) continue; var x = math.lerp(hp0.x, hp1.x, t); var p = math.float3(x, planeY, 1); var pTS = isOrthographic ? ViewToTileSpaceOrthographic(p) : ViewToTileSpace(p); planeRange.Expand((short)math.clamp(pTS.x, 0, tileCount.x - 1)); } var tileIndex = m_Offset + 1 + planeIndex; tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange); tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange); } tileRanges[m_Offset] = m_TileYRange; } hullPoints.Dispose(); clippedPoints.Dispose(); points.Dispose(); } /// /// Project onto Z=1, scale and offset into [0, tileCount] /// float2 ViewToTileSpace(float3 positionVS) { return (positionVS.xy / positionVS.z * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale; } /// /// Project onto Z=1, scale and offset into [0, tileCount] /// float2 ViewToTileSpaceOrthographic(float3 positionVS) { return (positionVS.xy * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale; } /// /// Expands the tile Y range and the X range in the row containing the position. /// void ExpandY(float3 positionVS) { // var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1); var positionTS = ViewToTileSpace(positionVS); var tileY = (int)positionTS.y; var tileX = (int)positionTS.x; m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1)); if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x) { var rowXRange = tileRanges[m_Offset + 1 + tileY]; rowXRange.Expand((short)tileX); tileRanges[m_Offset + 1 + tileY] = rowXRange; } } /// /// Expands the tile Y range and the X range in the row containing the position. /// void ExpandOrthographic(float3 positionVS) { // var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1); var positionTS = ViewToTileSpaceOrthographic(positionVS); var tileY = (int)positionTS.y; var tileX = (int)positionTS.x; m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1)); if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x) { var rowXRange = tileRanges[m_Offset + 1 + tileY]; rowXRange.Expand((short)tileX); tileRanges[m_Offset + 1 + tileY] = rowXRange; } } void ExpandRangeOrthographic(ref InclusiveRange range, float xVS) { range.Expand((short)math.clamp(ViewToTileSpaceOrthographic(xVS).x, 0, tileCount.x - 1)); } static float square(float x) => x * x; /// /// Finds the two horizon points seen from (0, 0) of a sphere projected onto either XZ or YZ. Takes clipping into account. /// static void GetSphereHorizon(float2 center, float radius, float near, float clipRadius, out float2 p0, out float2 p1) { var direction = math.normalize(center); // Distance from camera to center of sphere var d = math.length(center); // Distance from camera to sphere horizon edge var l = math.sqrt(d * d - radius * radius); // Height of circle horizon var h = l * radius / d; // Center of circle horizon var c = direction * (l * h / radius); p0 = math.float2(float.MinValue, 1f); p1 = math.float2(float.MaxValue, 1f); // Handle clipping if (center.y - radius < near) { p0 = math.float2(center.x + clipRadius, near); p1 = math.float2(center.x - clipRadius, near); } // Circle horizon points var c0 = c + math.float2(-direction.y, direction.x) * h; if (square(d) >= square(radius) && c0.y >= near) { if (c0.x > p0.x) { p0 = c0; } if (c0.x < p1.x) { p1 = c0; } } var c1 = c + math.float2(direction.y, -direction.x) * h; if (square(d) >= square(radius) && c1.y >= near) { if (c1.x > p0.x) { p0 = c1; } if (c1.x < p1.x) { p1 = c1; } } } static void GetSphereYPlaneHorizon(float3 center, float sphereRadius, float near, float clipRadius, float y, out float3 left, out float3 right) { // Note: The y-plane is the plane that is determined by `y` in that it contains the vector (1, 0, 0) // and goes through the points (0, y, 1) and (0, 0, 0). This would become a straight line in screen-space, and so it // represents the boundary between two rows of tiles. // Near-plane clipping - will get overwritten if no clipping is needed. // `y` is given for the view plane (Z=1), scale it so that it is on the near plane instead. var yNear = y * near; // Find the two points of intersection between the clip circle of the sphere and the y-plane. // Found using Pythagoras with a right triangle formed by three points: // (a) center of the clip circle // (b) a point straight above the clip circle center on the y-plane // (c) a point that is both on the circle and the y-plane (this is the point we want to find in the end) // The hypotenuse is formed by (a) and (c) with length equal to the clip radius. The known side is // formed by (a) and (b) and is simply the distance from the center to the y-plane along the y-axis. // The remaining side gives us the x-displacement needed to find the intersection points. var clipHalfWidth = math.sqrt(square(clipRadius) - square(yNear - center.y)); left = math.float3(center.x - clipHalfWidth, yNear, near); right = math.float3(center.x + clipHalfWidth, yNear, near); // Basis vectors in the y-plane for being able to parameterize the plane. var planeU = math.normalize(math.float3(0, y, 1)); var planeV = math.float3(1, 0, 0); // Calculate the normal of the y-plane. Found from: (0, y, 1) × (1, 0, 0) = (0, 1, -y) // This is used to represent the plane along with the origin, which is just 0 and thus doesn't show up // in the calculations. var normal = math.normalize(math.float3(0, 1, -y)); // We want to first find the circle from the intersection of the y-plane and the sphere. // The shortest distance from the sphere center and the y-plane. The sign determines which side of the plane // the center is on. var signedDistance = math.dot(normal, center); // Unsigned shortest distance from the sphere center to the plane. var distanceToPlane = math.abs(signedDistance); // The center of the intersection circle in the y-plane, which is the point on the plane closest to the // sphere center. I.e. this is at `distanceToPlane` from the center. var centerOnPlane = math.float2(math.dot(center, planeU), math.dot(center, planeV)); // Distance from origin to the circle center. var distanceInPlane = math.length(centerOnPlane); // Direction from origin to the circle center. var directionPS = centerOnPlane / distanceInPlane; // Calculate the radius of the circle using Pythagoras. We know that any point on the circle is a point on // the sphere. Thus we can construct a triangle with the sphere center, circle center, and a point on the // circle. We then want to find its distance to the circle center, as that will be equal to the radius. As // the point is on the sphere, it must be `sphereRadius` from the sphere center, forming the hypotenuse. The // other side is between the sphere and circle centers, which we've already calculated to be // `distanceToPlane`. var circleRadius = math.sqrt(square(sphereRadius) - square(distanceToPlane)); // Now that we have the circle, we can find the horizon points. Since we've parametrized the plane, we can // just do this in 2D. // Any of these conditions will yield NaN due to negative square roots. They are signs that clipping is needed, // so we fallback on the already calculated values in that case. if (square(distanceToPlane) <= square(sphereRadius) && square(circleRadius) <= square(distanceInPlane)) { // Distance from origin to circle horizon edge. var l = math.sqrt(square(distanceInPlane) - square(circleRadius)); // Height of circle horizon. var h = l * circleRadius / distanceInPlane; // Center of circle horizon. var c = directionPS * (l * h / circleRadius); // Calculate the horizon points in the plane. var leftOnPlane = c + math.float2(directionPS.y, -directionPS.x) * h; var rightOnPlane = c + math.float2(-directionPS.y, directionPS.x) * h; // Transform horizon points to view space and use if not clipped. var leftCandidate = leftOnPlane.x * planeU + leftOnPlane.y * planeV; if (leftCandidate.z >= near) left = leftCandidate; var rightCandidate = rightOnPlane.x * planeU + rightOnPlane.y * planeV; if (rightCandidate.z >= near) right = rightCandidate; } } /// /// Finds the two points of intersection of a 3D circle and the near plane. /// static bool GetCircleClipPoints(float3 circleCenter, float3 circleNormal, float circleRadius, float near, out float3 p0, out float3 p1) { // The intersection of two planes is a line where the direction is the cross product of the two plane normals. // In this case, it is the plane containing the circle, and the near plane. var lineDirection = math.normalize(math.cross(circleNormal, math.float3(0, 0, 1))); // Find a direction on the circle plane towards the nearest point on the intersection line. // It has to be perpendicular to the circle normal to be in the circle plane. The direction to the closest // point on a line is perpendicular to the line direction. Thus this is given by the cross product of the // line direction and the circle normal, as this gives us a vector that is perpendicular to both of those. var nearestDirection = math.cross(lineDirection, circleNormal); // Distance from circle center to the intersection line along `nearestDirection`. // This is done using a ray-plane intersection, where the plane is the near plane. // ({0, 0, near} - circleCenter) . {0, 0, 1} / (nearestDirection . {0, 0, 1}) var distance = (near - circleCenter.z) / nearestDirection.z; // The point on the line nearest to the circle center when traveling only in the circle plane. var nearestPoint = circleCenter + nearestDirection * distance; // Any line through a circle makes a chord where the endpoints are the intersections with the circle. // The half length of the circle chord can be found by constructing a right triangle from three points: // (a) The circle center. // (b) The nearest point. // (c) A point that is on circle and the intersection line. // The hypotenuse is formed by (a) and (c) and will have length `circleRadius` as it is on the circle. // The known side if formed by (a) and (b), which we have already calculated the distance of in `distance`. // The unknown side formed by (b) and (c) is then found using Pythagoras. var chordHalfLength = math.sqrt(square(circleRadius) - square(distance)); p0 = nearestPoint + lineDirection * chordHalfLength; p1 = nearestPoint - lineDirection * chordHalfLength; return math.abs(distance) <= circleRadius; } static (float, float) IntersectEllipseLine(float a, float b, float3 line) { // The line is represented as a homogenous 2D line {u, v, w} such that ux + vy + w = 0. // The ellipse is represented by the implicit equation x^2/a^2 + y^2/b^2 = 1. // We solve the line equation for y: y = (ux + w) / v // We then substitute this into the ellipse equation and expand and re-arrange a bit: // x^2/a^2 + ((ux + w) / v)^2/b^2 = 1 => // x^2/a^2 + ((ux + w)^2 / v^2)/b^2 = 1 => // x^2/a^2 + (ux + w)^2/(v^2 b^2) = 1 => // x^2/a^2 + (u^2 x^2 + w^2 + 2 u x w)/(v^2 b^2) = 1 => // x^2/a^2 + x^2 u^2 / (v^2 b^2) + w^2/(v^2 b^2) + x 2 u w / (v^2 b^2) = 1 => // x^2 (1/a^2 + u^2 / (v^2 b^2)) + x 2 u w / (v^2 b^2) + w^2 / (v^2 b^2) - 1 = 0 // We now have a quadratic equation with: // a = 1/a^2 + u^2 / (v^2 b^2) // b = 2 u w / (v^2 b^2) // c = w^2 / (v^2 b^2) - 1 var div = math.rcp(square(line.y) * square(b)); var qa = 1f / square(a) + square(line.x) * div; var qb = 2f * line.x * line.z * div; var qc = square(line.z) * div - 1f; var sqrtD = math.sqrt(qb * qb - 4f * qa * qc); var x1 = (-qb + sqrtD) / (2f * qa); var x2 = (-qb - sqrtD) / (2f * qa); return (x1, x2); } /// /// Calculates the horizon of a circle orthogonally projected to a plane as seen from the origin on the plane. /// /// The center of the circle projected onto the plane. /// The radius of the circle. /// The major axis of the ellipse formed by the projection of the circle. /// The minor axis of the ellipse formed by the projection of the circle. /// The first horizon point expressed as factors of and . /// The second horizon point expressed as factors of and . static void GetProjectedCircleHorizon(float2 center, float radius, float2 U, float2 V, out float2 uv1, out float2 uv2) { // U is assumed to be constructed such that it is never 0, but V can be if the circle projects to a line segment. // In that case, the solution can be trivially found using U only. var vl = math.length(V); if (vl < 1e-6f) { uv1 = math.float2(radius, 0); uv2 = math.float2(-radius, 0); } else { var ul = math.length(U); var ulinv = math.rcp(ul); var vlinv = math.rcp(vl); // Normalize U and V in the plane. var u = U * ulinv; var v = V * vlinv; // Major and minor axis of the ellipse. var a = ul * radius; var b = vl * radius; // Project the camera position into a 2D coordinate system with the circle at (0, 0) and // the ellipse major and minor axes as the coordinate system axes. This allows us to use the standard // form of the ellipse equation, greatly simplifying the calculations. var cameraUV = math.float2(math.dot(-center, u), math.dot(-center, v)); // Find the polar line of the camera position in the normalized UV coordinate system. var polar = math.float3(cameraUV.x / square(a), cameraUV.y / square(b), -1); var (t1, t2) = IntersectEllipseLine(a, b, polar); // Find Y by putting polar into line equation and solving. Denormalize by dividing by U and V lengths. uv1 = math.float2(t1 * ulinv, (-polar.x / polar.y * t1 - polar.z / polar.y) * vlinv); uv2 = math.float2(t2 * ulinv, (-polar.x / polar.y * t2 - polar.z / polar.y) * vlinv); } } static bool IntersectCircleYPlane( float y, float3 circleCenter, float3 circleNormal, float3 circleU, float3 circleV, float circleRadius, out float3 p1, out float3 p2) { p1 = p2 = 0; // Intersecting a circle with a plane yields 2 points, or the whole circle if the plane and the plane of the // circle are the same, or nothing if the planes are parallel but offset. We're only interested in the first // case. Our other tests will catch the other cases. // The two points will be on the line of intersection of the two planes. Thus we first have to find that line. // Shoot 2 rays along the y-plane and intersect the circle plane. We then transform them into the circle // plane, so that we can work in 2D. var CdotN = math.dot(circleCenter, circleNormal); var h1v = math.float3(1, y, 1) * CdotN / math.dot(math.float3(1, y, 1), circleNormal) - circleCenter; var h1 = math.float2(math.dot(h1v, circleU), math.dot(h1v, circleV)); var h2v = math.float3(-1, y, 1) * CdotN / math.dot(math.float3(-1, y, 1), circleNormal) - circleCenter; var h2 = math.float2(math.dot(h2v, circleU), math.dot(h2v, circleV)); var lineDirection = math.normalize(h2 - h1); // We now have the direction of the line, and would like to find the point on it that is closest to the // circle center. A line in 2D is similar to a plane in 3D. So we can calculate a normal, which is just a // perpendicular/orthogonal direction, and then take the dot product to find the distance. This is similar // to when calculating the d-term for a plane in 3D, which is also just calculating the closest distance // from the origin to the plane. var lineNormal = math.float2(lineDirection.y, -lineDirection.x); var distToLine = math.dot(h1, lineNormal); // We can then get that point on the line by following our normal with the distance we just calculated. var lineCenter = lineNormal * distToLine; // Avoid negative square roots, as this means we've hit one of the cases that we do not care about. if (distToLine > circleRadius) return false; // What's left now is to intersect the line with the circle. We can do so with Pythagoras. Our triangle // is made up of `lineCenter`, the circle center and one of the intersection points. // We know the distance from `lineCenter` to the circle center (`distToLine`), and the distance from // the circle center to one of the intersection points must be the circle radius, as it lies on the // circle, forming the hypotenuse. var l = math.sqrt(circleRadius * circleRadius - distToLine * distToLine); // What we found above is the distance from `lineCenter` to each of the intersection points. So we just // scrub along the line in both directions using the found distance, and then transform back into view // space. var x1 = lineCenter + l * lineDirection; var x2 = lineCenter - l * lineDirection; p1 = circleCenter + x1.x * circleU + x1.y * circleV; p2 = circleCenter + x2.x * circleU + x2.y * circleV; return true; } static void GetConeSideTangentPoints(float3 vertex, float3 axis, float cosHalfAngle, float circleRadius, float coneHeight, float range, float3 circleU, float3 circleV, out float3 l1, out float3 l2) { l1 = l2 = 0; if (math.dot(math.normalize(-vertex), axis) >= cosHalfAngle) { return; } var d = -math.dot(vertex, axis); // If d is zero, this leads to a numerical instability in the code later on. This is why we make the value // an epsilon if it is zero. if (d == 0f) d = 1e-6f; var sign = d < 0 ? -1f : 1f; // sign *= vertex.z < 0 ? -1f : 1f; // `origin` is the center of the circular slice we're about to calculate at distance `d` from the `vertex`. var origin = vertex + axis * d; // Get the radius of the circular slice of the cone at the `origin`. var radius = math.abs(d) * circleRadius / coneHeight; // `circleU` and `circleV` are the two vectors perpendicular to the cone's axis. `cameraUV` is thus the // position of the camera projected onto the plane of the circular slice. This basically creates a new // 2D coordinate space, with (0, 0) located at the center of the circular slice, which why this variable // is called `origin`. var cameraUV = math.float2(math.dot(circleU, -origin), math.dot(circleV, -origin)); // Use homogeneous coordinates to find the tangents. var polar = math.float3(cameraUV, -square(radius)); var p1 = math.float2(-1, -polar.x / polar.y * (-1) - polar.z / polar.y); var p2 = math.float2(1, -polar.x / polar.y * 1 - polar.z / polar.y); var lineDirection = math.normalize(p2 - p1); var lineNormal = math.float2(lineDirection.y, -lineDirection.x); var distToLine = math.dot(p1, lineNormal); var lineCenter = lineNormal * distToLine; var l = math.sqrt(radius * radius - distToLine * distToLine); var x1UV = lineCenter + l * lineDirection; var x2UV = lineCenter - l * lineDirection; var dir1 = math.normalize((origin + x1UV.x * circleU + x1UV.y * circleV) - vertex) * sign; var dir2 = math.normalize((origin + x2UV.x * circleU + x2UV.y * circleV) - vertex) * sign; l1 = dir1 * range; l2 = dir2 * range; } static float3 EvaluateNearConic(float near, float3 o, float3 d, float r, float3 u, float3 v, float theta) { var h = (near - o.z) / (d.z + r * u.z * math.cos(theta) + r * v.z * math.sin(theta)); return math.float3(o.xy + h * (d.xy + r * u.xy * math.cos(theta) + r * v.xy * math.sin(theta)), near); } // o, d, u and v are expected to contain {x or y, z}. I.e. pass in x values to find tangents where x' = 0 // Returns the two theta values as a float2. static float2 FindNearConicTangentTheta(float2 o, float2 d, float r, float2 u, float2 v) { var sqrt = math.sqrt(square(d.x) * square(u.y) + square(d.x) * square(v.y) - 2f * d.x * d.y * u.x * u.y - 2f * d.x * d.y * v.x * v.y + square(d.y) * square(u.x) + square(d.y) * square(v.x) - square(r) * square(u.x) * square(v.y) + 2f * square(r) * u.x * u.y * v.x * v.y - square(r) * square(u.y) * square(v.x)); var denom = d.x * v.y - d.y * v.x - r * u.x * v.y + r * u.y * v.x; return 2 * math.atan((-d.x * u.y + d.y * u.x + math.float2(1, -1) * sqrt) / denom); } static float2 FindNearConicYTheta(float near, float3 o, float3 d, float r, float3 u, float3 v, float y) { var sqrt = math.sqrt(-square(d.y) * square(o.z) + 2 * square(d.y) * o.z * near - square(d.y) * square(near) + 2 * d.y * d.z * o.y * o.z - 2 * d.y * d.z * o.y * near - 2 * d.y * d.z * o.z * y + 2 * d.y * d.z * y * near - square(d.z) * square(o.y) + 2 * square(d.z) * o.y * y - square(d.z) * square(y) + square(o.y) * square(r) * square(u.z) + square(o.y) * square(r) * square(v.z) - 2 * o.y * o.z * square(r) * u.y * u.z - 2 * o.y * o.z * square(r) * v.y * v.z - 2 * o.y * y * square(r) * square(u.z) - 2 * o.y * y * square(r) * square(v.z) + 2 * o.y * square(r) * u.y * u.z * near + 2 * o.y * square(r) * v.y * v.z * near + square(o.z) * square(r) * square(u.y) + square(o.z) * square(r) * square(v.y) + 2 * o.z * y * square(r) * u.y * u.z + 2 * o.z * y * square(r) * v.y * v.z - 2 * o.z * square(r) * square(u.y) * near - 2 * o.z * square(r) * square(v.y) * near + square(y) * square(r) * square(u.z) + square(y) * square(r) * square(v.z) - 2 * y * square(r) * u.y * u.z * near - 2 * y * square(r) * v.y * v.z * near + square(r) * square(u.y) * square(near) + square(r) * square(v.y) * square(near)); var denom = d.y * o.z - d.y * near - d.z * o.y + d.z * y + o.y * r * u.z - o.z * r * u.y - y * r * u.z + r * u.y * near; return 2 * math.atan((r * (o.y * v.z - o.z * v.y - y * v.z + v.y * near) + math.float2(1, -1) * sqrt) / denom); } } }