#ifndef UNITY_COMMON_MATERIAL_INCLUDED #define UNITY_COMMON_MATERIAL_INCLUDED #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 || SHADER_API_SWITCH #pragma warning (disable : 3205) // conversion of larger type to smaller #endif //----------------------------------------------------------------------------- // Define constants //----------------------------------------------------------------------------- #define DEFAULT_SPECULAR_VALUE 0.04 // Following constant are used when we use clear coat properties that can't be store in the Gbuffer (with the Lit shader) #define CLEAR_COAT_IOR 1.5 #define CLEAR_COAT_IETA (1.0 / CLEAR_COAT_IOR) // IETA is the inverse eta which is the ratio of IOR of two interface #define CLEAR_COAT_F0 0.04 // IORToFresnel0(CLEAR_COAT_IOR) #define CLEAR_COAT_ROUGHNESS 0.01 #define CLEAR_COAT_PERCEPTUAL_SMOOTHNESS RoughnessToPerceptualSmoothness(CLEAR_COAT_ROUGHNESS) #define CLEAR_COAT_PERCEPTUAL_ROUGHNESS RoughnessToPerceptualRoughness(CLEAR_COAT_ROUGHNESS) #define CLEAR_COAT_SSR_PERCEPTUAL_ROUGHNESS 0.0 // For screen space reflections and ray traced reflections, we want to have a purely smooth surface to map the envrionement light behavior //----------------------------------------------------------------------------- // Helper functions for roughness //----------------------------------------------------------------------------- #ifndef BUILTIN_TARGET_API real PerceptualRoughnessToRoughness(real perceptualRoughness) { return perceptualRoughness * perceptualRoughness; } real RoughnessToPerceptualRoughness(real roughness) { return sqrt(roughness); } #endif real RoughnessToPerceptualSmoothness(real roughness) { return 1.0 - sqrt(roughness); } real PerceptualSmoothnessToRoughness(real perceptualSmoothness) { return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness); } real PerceptualSmoothnessToPerceptualRoughness(real perceptualSmoothness) { return (1.0 - perceptualSmoothness); } // Beckmann to GGX roughness "conversions": // // As also noted for NormalVariance in this file, Beckmann microfacet models use a Gaussian distribution of slopes // and the roughness parameter absorbs constants in the canonical Gaussian formula and is thus not exactly the variance. // The relationship is: // // roughnessBeckmann^2 = 2 variance (where variance is usually denoted sigma^2 but some comp gfx papers use sigma for // variance or even sigma for roughness itself.) // // Microfacet BRDF models with a GGX NDF implies a Cauchy distribution of slopes (also corresponds to the distribution // of slopes on an ellipsoid). Cauchy distributions don't have second moments, which precludes having a variance, // but chopping the far tails of GGX and keeping 94% of the mass yields a distribution with a defined variance where // we can then relate the roughness of GGX to a variance (see Ray Tracing Gems p153 - the reference is wrong though, // the Conty paper doesn't mention this at all, but it can be found in stats using quantiles): // // roughnessGGX^2 = variance / 2 // // From the two previous, if we want roughly comparable variances of slopes between a Beckmann and a GGX NDF, we can // equate the variances and get a conversion of their roughnesses: // // 2 * roughnessGGX^2 = roughnessBeckmann^2 / 2 <==> // 4 * roughnessGGX^2 = roughnessBeckmann^2 <==> // 2 * roughnessGGX = roughnessBeckmann // // (Note that the Ray Tracing Gems paper makes an error on p154 writing sqrt(2) * roughnessGGX = roughnessBeckmann; // Their validation study using ray tracing and LEADR - which looks good - is for the *variance to GGX* roughness mapping, // not the Beckmann to GGX roughness "conversion") real BeckmannRoughnessToGGXRoughness(real roughnessBeckmann) { return 0.5 * roughnessBeckmann; } real PerceptualRoughnessBeckmannToGGX(real perceptualRoughnessBeckmann) { //sqrt(a_ggx) = sqrt(0.5) sqrt(a_beckmann) return sqrt(0.5) * perceptualRoughnessBeckmann; } real GGXRoughnessToBeckmannRoughness(real roughnessGGX) { return 2.0 * roughnessGGX; } real PerceptualRoughnessToPerceptualSmoothness(real perceptualRoughness) { return (1.0 - perceptualRoughness); } // WARNING: this has been deprecated, and should not be used! // Using roughness values of 0 leads to INFs and NANs. The only sensible place to use the roughness // value of 0 is IBL, so we do not modify the perceptual roughness which is used to select the MIP map level. // Note: making the constant too small results in aliasing. real ClampRoughnessForAnalyticalLights(real roughness) { return max(roughness, 1.0 / 1024.0); } // Given that the GGX model is invalid for a roughness of 0.0. This values have been experimentally evaluated to be the limit for the roughness // for integration. real ClampRoughnessForRaytracing(real roughness) { return max(roughness, 0.001225); } real ClampPerceptualRoughnessForRaytracing(real perceptualRoughness) { return max(perceptualRoughness, 0.035); } void ConvertValueAnisotropyToValueTB(real value, real anisotropy, out real valueT, out real valueB) { // Use the parametrization of Sony Imageworks. // Ref: Revisiting Physically Based Shading at Imageworks, p. 15. valueT = value * (1 + anisotropy); valueB = value * (1 - anisotropy); } void ConvertAnisotropyToRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB) { real roughness = PerceptualRoughnessToRoughness(perceptualRoughness); ConvertValueAnisotropyToValueTB(roughness, anisotropy, roughnessT, roughnessB); } void ConvertRoughnessTAndAnisotropyToRoughness(real roughnessT, real anisotropy, out real roughness) { roughness = roughnessT / (1 + anisotropy); } real ConvertRoughnessTAndBToRoughness(real roughnessT, real roughnessB) { return 0.5 * (roughnessT + roughnessB); } void ConvertRoughnessToAnisotropy(real roughnessT, real roughnessB, out real anisotropy) { anisotropy = ((roughnessT - roughnessB) / max(roughnessT + roughnessB, 0.0001)); } // WARNING: this has been deprecated, and should not be used! // Same as ConvertAnisotropyToRoughness but // roughnessT and roughnessB are clamped, and are meant to be used with punctual and directional lights. void ConvertAnisotropyToClampRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB) { ConvertAnisotropyToRoughness(perceptualRoughness, anisotropy, roughnessT, roughnessB); roughnessT = ClampRoughnessForAnalyticalLights(roughnessT); roughnessB = ClampRoughnessForAnalyticalLights(roughnessB); } // Use with stack BRDF (clear coat / coat) - This only used same equation to convert from Blinn-Phong spec power to Beckmann roughness real RoughnessToVariance(real roughness) { return 2.0 / Sq(roughness) - 2.0; } real VarianceToRoughness(real variance) { return sqrt(2.0 / (variance + 2.0)); } // Normal Map Filtering - This must match HDRP\Editor\AssetProcessors\NormalMapFilteringTexturePostprocessor.cs - highestVarianceAllowed (TODO: Move in core) #define NORMALMAP_HIGHEST_VARIANCE 0.03125 float DecodeVariance(float gradientW) { return gradientW * NORMALMAP_HIGHEST_VARIANCE; } // Return modified perceptualSmoothness based on provided variance (get from GeometricNormalVariance + TextureNormalVariance) float NormalFiltering(float perceptualSmoothness, float variance, float threshold) { float roughness = PerceptualSmoothnessToRoughness(perceptualSmoothness); // Ref: Geometry into Shading - http://graphics.pixar.com/library/BumpRoughness/paper.pdf - equation (3) float squaredRoughness = saturate(roughness * roughness + min(2.0 * variance, threshold * threshold)); // threshold can be really low, square the value for easier control return RoughnessToPerceptualSmoothness(sqrt(squaredRoughness)); } float ProjectedSpaceNormalFiltering(float perceptualSmoothness, float variance, float threshold) { float roughness = PerceptualSmoothnessToRoughness(perceptualSmoothness); // Ref: Stable Geometric Specular Antialiasing with Projected-Space NDF Filtering - https://yusuketokuyoshi.com/papers/2021/Tokuyoshi2021SAA.pdf float squaredRoughness = roughness * roughness; float projRoughness2 = squaredRoughness / (1.0 - squaredRoughness); float filteredProjRoughness2 = saturate(projRoughness2 + min(2.0 * variance, threshold * threshold)); squaredRoughness = filteredProjRoughness2 / (filteredProjRoughness2 + 1.0f); return RoughnessToPerceptualSmoothness(sqrt(squaredRoughness)); } // Reference: Error Reduction and Simplification for Shading Anti-Aliasing // Specular antialiasing for geometry-induced normal (and NDF) variations: Tokuyoshi / Kaplanyan et al.'s method. // This is the deferred approximation, which works reasonably well so we keep it for forward too for now. // screenSpaceVariance should be at most 0.5^2 = 0.25, as that corresponds to considering // a gaussian pixel reconstruction kernel with a standard deviation of 0.5 of a pixel, thus 2 sigma covering the whole pixel. float GeometricNormalVariance(float3 geometricNormalWS, float screenSpaceVariance) { float3 deltaU = ddx(geometricNormalWS); float3 deltaV = ddy(geometricNormalWS); return screenSpaceVariance * (dot(deltaU, deltaU) + dot(deltaV, deltaV)); } // Return modified perceptualSmoothness float GeometricNormalFiltering(float perceptualSmoothness, float3 geometricNormalWS, float screenSpaceVariance, float threshold) { float variance = GeometricNormalVariance(geometricNormalWS, screenSpaceVariance); return NormalFiltering(perceptualSmoothness, variance, threshold); } float ProjectedSpaceGeometricNormalFiltering(float perceptualSmoothness, float3 geometricNormalWS, float screenSpaceVariance, float threshold) { float variance = GeometricNormalVariance(geometricNormalWS, screenSpaceVariance); return ProjectedSpaceNormalFiltering(perceptualSmoothness, variance, threshold); } // Normal map filtering based on The Order : 1886 SIGGRAPH course notes implementation. // Basically Toksvig with an intermediate single vMF lobe induced dispersion (Han et al. 2007) // // This returns 2 times the variance of the induced "mesoNDF" lobe (an NDF induced from a section of // the normal map) from the level 0 mip normals covered by the "current texel". // // avgNormalLength gives the dispersion information for the covered normals. // // Note that hw filtering on the normal map should be trilinear to be conservative, while anisotropic // risk underfiltering. Could also compute average normal on the fly with a proper normal map format, // like Toksvig. float TextureNormalVariance(float avgNormalLength) { float variance = 0.0; if (avgNormalLength < 1.0) { float avgNormLen2 = avgNormalLength * avgNormalLength; float kappa = (3.0 * avgNormalLength - avgNormalLength * avgNormLen2) / (1.0 - avgNormLen2); // Ref: Frequency Domain Normal Map Filtering - http://www.cs.columbia.edu/cg/normalmap/normalmap.pdf (equation 21) // Relationship between between the standard deviation of a Gaussian distribution and the roughness parameter of a Beckmann distribution. // is roughness^2 = 2 variance (note: variance is sigma^2) // (Ref: Filtering Distributions of Normals for Shading Antialiasing - Equation just after (14)) // Relationship between gaussian lobe and vMF lobe is 2 * variance = 1 / (2 * kappa) = roughness^2 // (Equation 36 of Normal map filtering based on The Order : 1886 SIGGRAPH course notes implementation). // So to get variance we must use variance = 1 / (4 * kappa) variance = 0.25 / kappa; } return variance; } float TextureNormalFiltering(float perceptualSmoothness, float avgNormalLength, float threshold) { float variance = TextureNormalVariance(avgNormalLength); return NormalFiltering(perceptualSmoothness, variance, threshold); } // ---------------------------------------------------------------------------- // Helper for Disney parametrization // ---------------------------------------------------------------------------- float3 ComputeDiffuseColor(float3 baseColor, float metallic) { return baseColor * (1.0 - metallic); } float3 ComputeFresnel0(float3 baseColor, float metallic, float dielectricF0) { return lerp(dielectricF0.xxx, baseColor, metallic); } // ---------------------------------------------------------------------------- // Helper for normal blending // ---------------------------------------------------------------------------- // ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707 // assume compositing in world space // Note: Using vtxNormal = real3(0, 0, 1) give the BlendNormalRNM formulation. // TODO: Untested real3 BlendNormalWorldspaceRNM(real3 n1, real3 n2, real3 vtxNormal) { // Build the shortest-arc quaternion real4 q = real4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1)); // Rotate the normal return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1); } // ref http://blog.selfshadow.com/publications/blending-in-detail/ // ref https://gist.github.com/selfshadow/8048308 // Reoriented Normal Mapping // Blending when n1 and n2 are already 'unpacked' and normalised // assume compositing in tangent space real3 BlendNormalRNM(real3 n1, real3 n2) { real3 t = n1.xyz + real3(0.0, 0.0, 1.0); real3 u = n2.xyz * real3(-1.0, -1.0, 1.0); real3 r = (t / t.z) * dot(t, u) - u; return r; } // assume compositing in tangent space real3 BlendNormal(real3 n1, real3 n2) { return normalize(real3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z)); } // ---------------------------------------------------------------------------- // Helper for triplanar // ---------------------------------------------------------------------------- // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets real3 ComputeTriplanarWeights(real3 normal) { // Determine the blend weights for the 3 planar projections. real3 blendWeights = abs(normal); // Tighten up the blending zone blendWeights = (blendWeights - 0.2); blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3); // Force weights to sum to 1.0 (very important!) blendWeights = max(blendWeights, real3(0.0, 0.0, 0.0)); blendWeights /= dot(blendWeights, 1.0); return blendWeights; } // Planar/Triplanar convention for Unity in world space void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY) { // Caution: This must follow the same rule as what is use for SurfaceGradient triplanar // TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space uvXZ = float2(position.x, position.z); uvXY = float2(position.x, position.y); uvZY = float2(position.z, position.y); } // ---------------------------------------------------------------------------- // Helper for detail map operation // ---------------------------------------------------------------------------- real LerpWhiteTo(real b, real t) { real oneMinusT = 1.0 - t; return oneMinusT + b * t; } #ifndef BUILTIN_TARGET_API real3 LerpWhiteTo(real3 b, real t) { real oneMinusT = 1.0 - t; return real3(oneMinusT, oneMinusT, oneMinusT) + b * t; } #endif #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 || SHADER_API_SWITCH #pragma warning (enable : 3205) // conversion of larger type to smaller #endif #endif // UNITY_COMMON_MATERIAL_INCLUDED