#ifndef UNITY_BSDF_INCLUDED #define UNITY_BSDF_INCLUDED #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 || SHADER_API_SWITCH #pragma warning (disable : 3205) // conversion of larger type to smaller #endif #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl" // Note: All NDF and diffuse term have a version with and without divide by PI. // Version with divide by PI are use for direct lighting. // Version without divide by PI are use for image based lighting where often the PI cancel during importance sampling //----------------------------------------------------------------------------- // Help for BSDF evaluation //----------------------------------------------------------------------------- // Cosine-weighted BSDF (a BSDF taking the projected solid angle into account). // If some of the values are monochromatic, the compiler will optimize accordingly. struct CBSDF { float3 diffR; // Diffuse reflection (T -> MS -> T, same sides) float3 specR; // Specular reflection (R, RR, TRT, etc) float3 diffT; // Diffuse transmission (rough T or TT, opposite sides) float3 specT; // Specular transmission (T, TT, TRRT, etc) }; //----------------------------------------------------------------------------- // Fresnel term //----------------------------------------------------------------------------- real F_Schlick(real f0, real f90, real u) { real x = 1.0 - u; real x2 = x * x; real x5 = x * x2 * x2; return (f90 - f0) * x5 + f0; // sub mul mul mul sub mad } real F_Schlick(real f0, real u) { return F_Schlick(f0, 1.0, u); // sub mul mul mul sub mad } real3 F_Schlick(real3 f0, real f90, real u) { real x = 1.0 - u; real x2 = x * x; real x5 = x * x2 * x2; return f0 * (1.0 - x5) + (f90 * x5); // sub mul mul mul sub mul mad*3 } real3 F_Schlick(real3 f0, real u) { return F_Schlick(f0, 1.0, u); // sub mul mul mul sub mad*3 } // Does not handle TIR. real F_Transm_Schlick(real f0, real f90, real u) { real x = 1.0 - u; real x2 = x * x; real x5 = x * x2 * x2; return (1.0 - f90 * x5) - f0 * (1.0 - x5); // sub mul mul mul mad sub mad } // Does not handle TIR. real F_Transm_Schlick(real f0, real u) { return F_Transm_Schlick(f0, 1.0, u); // sub mul mul mad mad } // Does not handle TIR. real3 F_Transm_Schlick(real3 f0, real f90, real u) { real x = 1.0 - u; real x2 = x * x; real x5 = x * x2 * x2; return (1.0 - f90 * x5) - f0 * (1.0 - x5); // sub mul mul mul mad sub mad*3 } // Does not handle TIR. real3 F_Transm_Schlick(real3 f0, real u) { return F_Transm_Schlick(f0, 1.0, u); // sub mul mul mad mad*3 } // Compute the cos of critical angle: cos(asin(eta)) == sqrt(1.0 - eta*eta) // eta == IORMedium/IORSource // If eta >= 1 the it's an AirMedium interation, otherwise it's MediumAir interation real CosCriticalAngle(real eta) { return sqrt(max(1.0 - Sq(eta), 0.0)); // For 1 <= IOR <= 4: Max error: 0.0268594 //return eta >= 1.0 ? 0.0 : (((3.0 + eta) * sqrt(max(0.0, 1.0 - eta))) / (2.0 * sqrt(2.0))); // For 1 <= IOR <= 4: Max error: 0.00533065 //return eta >= 1.0 ? 0.0 : (-((-23.0 - 10.0 * eta + Sq(eta)) * sqrt(max(0.0, 1.0 - eta))) / (16.0 * sqrt(2.0))); // For 1 <= IOR <= 4: Max error: 0.00129402 //return eta >= 1.0 ? 0.0 : (((91.0 + 43.0 * eta - 7.0 * Sq(eta) + pow(eta, 3)) * sqrt(max(0.0, 1.0 - eta))) / (64. * sqrt(2.0))); } // Ref: https://seblagarde.wordpress.com/2013/04/29/memo-on-fresnel-equations/ // Fresnel dielectric / dielectric real F_FresnelDielectric(real ior, real u) { real g = sqrt(Sq(ior) + Sq(u) - 1.0); // The "1.0 - saturate(1.0 - result)" formulation allows to recover form cases where g is undefined, for IORs < 1 return 1.0 - saturate(1.0 - 0.5 * Sq((g - u) / (g + u)) * (1.0 + Sq(((g + u) * u - 1.0) / ((g - u) * u + 1.0)))); } // Fresnel dieletric / conductor // Note: etak2 = etak * etak (optimization for Artist Friendly Metallic Fresnel below) // eta = eta_t / eta_i and etak = k_t / n_i real3 F_FresnelConductor(real3 eta, real3 etak2, real cosTheta) { real cosTheta2 = cosTheta * cosTheta; real sinTheta2 = 1.0 - cosTheta2; real3 eta2 = eta * eta; real3 t0 = eta2 - etak2 - sinTheta2; real3 a2plusb2 = sqrt(t0 * t0 + 4.0 * eta2 * etak2); real3 t1 = a2plusb2 + cosTheta2; real3 a = sqrt(0.5 * (a2plusb2 + t0)); real3 t2 = 2.0 * a * cosTheta; real3 Rs = (t1 - t2) / (t1 + t2); real3 t3 = cosTheta2 * a2plusb2 + sinTheta2 * sinTheta2; real3 t4 = t2 * sinTheta2; real3 Rp = Rs * (t3 - t4) / (t3 + t4); return 0.5 * (Rp + Rs); } // Conversion FO/IOR TEMPLATE_2_REAL(IorToFresnel0, transmittedIor, incidentIor, return Sq((transmittedIor - incidentIor) / (transmittedIor + incidentIor)) ) // ior is a value between 1.0 and 3.0. 1.0 is air interface real IorToFresnel0(real transmittedIor) { return IorToFresnel0(transmittedIor, 1.0); } // Assume air interface for top // Note: We don't handle the case fresnel0 == 1 //real Fresnel0ToIor(real fresnel0) //{ // real sqrtF0 = sqrt(fresnel0); // return (1.0 + sqrtF0) / (1.0 - sqrtF0); //} TEMPLATE_1_REAL(Fresnel0ToIor, fresnel0, return ((1.0 + sqrt(fresnel0)) / (1.0 - sqrt(fresnel0))) ) // This function is a coarse approximation of computing fresnel0 for a different top than air (here clear coat of IOR 1.5) when we only have fresnel0 with air interface // This function is equivalent to IorToFresnel0(Fresnel0ToIor(fresnel0), 1.5) // mean // real sqrtF0 = sqrt(fresnel0); // return Sq(1.0 - 5.0 * sqrtF0) / Sq(5.0 - sqrtF0); // Optimization: Fit of the function (3 mad) for range [0.04 (should return 0), 1 (should return 1)] TEMPLATE_1_REAL(ConvertF0ForAirInterfaceToF0ForClearCoat15, fresnel0, return saturate(-0.0256868 + fresnel0 * (0.326846 + (0.978946 - 0.283835 * fresnel0) * fresnel0))) // Even coarser approximation of ConvertF0ForAirInterfaceToF0ForClearCoat15 (above) for mobile (2 mad) TEMPLATE_1_REAL(ConvertF0ForAirInterfaceToF0ForClearCoat15Fast, fresnel0, return saturate(fresnel0 * (fresnel0 * 0.526868 + 0.529324) - 0.0482256)) // Artist Friendly Metallic Fresnel Ref: http://jcgt.org/published/0003/04/03/paper.pdf real3 GetIorN(real3 f0, real3 edgeTint) { real3 sqrtF0 = sqrt(f0); return lerp((1.0 - f0) / (1.0 + f0), (1.0 + sqrtF0) / (1.0 - sqrt(f0)), edgeTint); } real3 getIorK2(real3 f0, real3 n) { real3 nf0 = Sq(n + 1.0) * f0 - Sq(f0 - 1.0); return nf0 / (1.0 - f0); } // same as regular refract except there is not the test for total internal reflection + the vector is flipped for processing real3 CoatRefract(real3 X, real3 N, real ieta) { real XdotN = saturate(dot(N, X)); return ieta * X + (sqrt(1 + ieta * ieta * (XdotN * XdotN - 1)) - ieta * XdotN) * N; } //----------------------------------------------------------------------------- // Specular BRDF //----------------------------------------------------------------------------- float Lambda_GGX(float roughness, float3 V) { return 0.5 * (sqrt(1.0 + (Sq(roughness * V.x) + Sq(roughness * V.y)) / Sq(V.z)) - 1.0); } real D_GGXNoPI(real NdotH, real roughness) { real a2 = Sq(roughness); real s = (NdotH * a2 - NdotH) * NdotH + 1.0; // If roughness is 0, returns (NdotH == 1 ? 1 : 0). // That is, it returns 1 for perfect mirror reflection, and 0 otherwise. return SafeDiv(a2, s * s); } real D_GGX(real NdotH, real roughness) { return INV_PI * D_GGXNoPI(NdotH, roughness); } // Ref: Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, p. 19, 29. // p. 84 (37/60) real G_MaskingSmithGGX(real NdotV, real roughness) { // G1(V, H) = HeavisideStep(VdotH) / (1 + Lambda(V)). // Lambda(V) = -0.5 + 0.5 * sqrt(1 + 1 / a^2). // a = 1 / (roughness * tan(theta)). // 1 + Lambda(V) = 0.5 + 0.5 * sqrt(1 + roughness^2 * tan^2(theta)). // tan^2(theta) = (1 - cos^2(theta)) / cos^2(theta) = 1 / cos^2(theta) - 1. // Assume that (VdotH > 0), e.i. (acos(LdotV) < Pi). return 1.0 / (0.5 + 0.5 * sqrt(1.0 + Sq(roughness) * (1.0 / Sq(NdotV) - 1.0))); } // Precompute part of lambdaV real GetSmithJointGGXPartLambdaV(real NdotV, real roughness) { real a2 = Sq(roughness); return sqrt((-NdotV * a2 + NdotV) * NdotV + a2); } // Note: V = G / (4 * NdotL * NdotV) // Ref: http://jcgt.org/published/0003/02/03/paper.pdf real V_SmithJointGGX(real NdotL, real NdotV, real roughness, real partLambdaV) { real a2 = Sq(roughness); // Original formulation: // lambda_v = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5 // lambda_l = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5 // G = 1 / (1 + lambda_v + lambda_l); // Reorder code to be more optimal: real lambdaV = NdotL * partLambdaV; real lambdaL = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2); // Simplify visibility term: (2.0 * NdotL * NdotV) / ((4.0 * NdotL * NdotV) * (lambda_v + lambda_l)) return 0.5 / max(lambdaV + lambdaL, REAL_MIN); } real V_SmithJointGGX(real NdotL, real NdotV, real roughness) { real partLambdaV = GetSmithJointGGXPartLambdaV(NdotV, roughness); return V_SmithJointGGX(NdotL, NdotV, roughness, partLambdaV); } // Inline D_GGX() * V_SmithJointGGX() together for better code generation. real DV_SmithJointGGX(real NdotH, real NdotL, real NdotV, real roughness, real partLambdaV) { real a2 = Sq(roughness); real s = (NdotH * a2 - NdotH) * NdotH + 1.0; real lambdaV = NdotL * partLambdaV; real lambdaL = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2); real2 D = real2(a2, s * s); // Fraction without the multiplier (1/Pi) real2 G = real2(1, lambdaV + lambdaL); // Fraction without the multiplier (1/2) // This function is only used for direct lighting. // If roughness is 0, the probability of hitting a punctual or directional light is also 0. // Therefore, we return 0. The most efficient way to do it is with a max(). return INV_PI * 0.5 * (D.x * G.x) / max(D.y * G.y, REAL_MIN); } real DV_SmithJointGGX(real NdotH, real NdotL, real NdotV, real roughness) { real partLambdaV = GetSmithJointGGXPartLambdaV(NdotV, roughness); return DV_SmithJointGGX(NdotH, NdotL, NdotV, roughness, partLambdaV); } // Precompute a part of LambdaV. // Note on this linear approximation. // Exact for roughness values of 0 and 1. Also, exact when the cosine is 0 or 1. // Otherwise, the worst case relative error is around 10%. // https://www.desmos.com/calculator/wtp8lnjutx real GetSmithJointGGXPartLambdaVApprox(real NdotV, real roughness) { real a = roughness; return NdotV * (1 - a) + a; } real V_SmithJointGGXApprox(real NdotL, real NdotV, real roughness, real partLambdaV) { real a = roughness; real lambdaV = NdotL * partLambdaV; real lambdaL = NdotV * (NdotL * (1 - a) + a); return 0.5 / (lambdaV + lambdaL); } real V_SmithJointGGXApprox(real NdotL, real NdotV, real roughness) { real partLambdaV = GetSmithJointGGXPartLambdaVApprox(NdotV, roughness); return V_SmithJointGGXApprox(NdotL, NdotV, roughness, partLambdaV); } // roughnessT -> roughness in tangent direction // roughnessB -> roughness in bitangent direction real D_GGXAnisoNoPI(real TdotH, real BdotH, real NdotH, real roughnessT, real roughnessB) { real a2 = roughnessT * roughnessB; real3 v = real3(roughnessB * TdotH, roughnessT * BdotH, a2 * NdotH); real s = dot(v, v); // If roughness is 0, returns (NdotH == 1 ? 1 : 0). // That is, it returns 1 for perfect mirror reflection, and 0 otherwise. return SafeDiv(a2 * a2 * a2, s * s); } real D_GGXAniso(real TdotH, real BdotH, real NdotH, real roughnessT, real roughnessB) { return INV_PI * D_GGXAnisoNoPI(TdotH, BdotH, NdotH, roughnessT, roughnessB); } real GetSmithJointGGXAnisoPartLambdaV(real TdotV, real BdotV, real NdotV, real roughnessT, real roughnessB) { return length(real3(roughnessT * TdotV, roughnessB * BdotV, NdotV)); } // Note: V = G / (4 * NdotL * NdotV) // Ref: https://cedec.cesa.or.jp/2015/session/ENG/14698.html The Rendering Materials of Far Cry 4 real V_SmithJointGGXAniso(real TdotV, real BdotV, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB, real partLambdaV) { real lambdaV = NdotL * partLambdaV; real lambdaL = NdotV * length(real3(roughnessT * TdotL, roughnessB * BdotL, NdotL)); return 0.5 / (lambdaV + lambdaL); } real V_SmithJointGGXAniso(real TdotV, real BdotV, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB) { real partLambdaV = GetSmithJointGGXAnisoPartLambdaV(TdotV, BdotV, NdotV, roughnessT, roughnessB); return V_SmithJointGGXAniso(TdotV, BdotV, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB, partLambdaV); } // Inline D_GGXAniso() * V_SmithJointGGXAniso() together for better code generation. real DV_SmithJointGGXAniso(real TdotH, real BdotH, real NdotH, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB, real partLambdaV) { real a2 = roughnessT * roughnessB; real3 v = real3(roughnessB * TdotH, roughnessT * BdotH, a2 * NdotH); real s = dot(v, v); real lambdaV = NdotL * partLambdaV; real lambdaL = NdotV * length(real3(roughnessT * TdotL, roughnessB * BdotL, NdotL)); real2 D = real2(a2 * a2 * a2, s * s); // Fraction without the multiplier (1/Pi) real2 G = real2(1, lambdaV + lambdaL); // Fraction without the multiplier (1/2) // This function is only used for direct lighting. // If roughness is 0, the probability of hitting a punctual or directional light is also 0. // Therefore, we return 0. The most efficient way to do it is with a max(). return (INV_PI * 0.5) * (D.x * G.x) / max(D.y * G.y, REAL_MIN); } real DV_SmithJointGGXAniso(real TdotH, real BdotH, real NdotH, real TdotV, real BdotV, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB) { real partLambdaV = GetSmithJointGGXAnisoPartLambdaV(TdotV, BdotV, NdotV, roughnessT, roughnessB); return DV_SmithJointGGXAniso(TdotH, BdotH, NdotH, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB, partLambdaV); } // Get projected roughness for a certain normalized direction V in tangent space // and an anisotropic roughness // Ref: Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, Heitz 2014, pp. 86, 88 - 39/60, 41/60 float GetProjectedRoughness(float TdotV, float BdotV, float NdotV, float roughnessT, float roughnessB) { float2 roughness = float2(roughnessT, roughnessB); float sinTheta2 = max((1 - Sq(NdotV)), FLT_MIN); // if sinTheta^2 = 0, NdotV = 1, TdotV = BdotV = 0 and roughness is arbitrary, no real azimuth // as there's a breakdown of the spherical parameterization, so we clamp under by FLT_MIN in any case // for safe division // Note: // sin(thetaV)^2 * cos(phiV)^2 = (TdotV)^2 // sin(thetaV)^2 * sin(phiV)^2 = (BdotV)^2 float2 vProj2 = Sq(float2(TdotV, BdotV)) * rcp(sinTheta2); // vProj2 = (cos^2(phi), sin^2(phi)) float projRoughness = sqrt(dot(vProj2, roughness*roughness)); return projRoughness; } //----------------------------------------------------------------------------- // Diffuse BRDF - diffuseColor is expected to be multiply by the caller //----------------------------------------------------------------------------- real LambertNoPI() { return 1.0; } real Lambert() { return INV_PI; } real DisneyDiffuseNoPI(real NdotV, real NdotL, real LdotV, real perceptualRoughness) { // (2 * LdotH * LdotH) = 1 + LdotV // real fd90 = 0.5 + (2 * LdotH * LdotH) * perceptualRoughness; real fd90 = 0.5 + (perceptualRoughness + perceptualRoughness * LdotV); // Two schlick fresnel term real lightScatter = F_Schlick(1.0, fd90, NdotL); real viewScatter = F_Schlick(1.0, fd90, NdotV); // Normalize the BRDF for polar view angles of up to (Pi/4). // We use the worst case of (roughness = albedo = 1), and, for each view angle, // integrate (brdf * cos(theta_light)) over all light directions. // The resulting value is for (theta_view = 0), which is actually a little bit larger // than the value of the integral for (theta_view = Pi/4). // Hopefully, the compiler folds the constant together with (1/Pi). return rcp(1.03571) * (lightScatter * viewScatter); } #ifndef BUILTIN_TARGET_API real DisneyDiffuse(real NdotV, real NdotL, real LdotV, real perceptualRoughness) { return INV_PI * DisneyDiffuseNoPI(NdotV, NdotL, LdotV, perceptualRoughness); } #endif // Ref: Diffuse Lighting for GGX + Smith Microsurfaces, p. 113. real3 DiffuseGGXNoPI(real3 albedo, real NdotV, real NdotL, real NdotH, real LdotV, real roughness) { real facing = 0.5 + 0.5 * LdotV; // (LdotH)^2 real rough = facing * (0.9 - 0.4 * facing) * (0.5 / NdotH + 1); real transmitL = F_Transm_Schlick(0, NdotL); real transmitV = F_Transm_Schlick(0, NdotV); real smooth = transmitL * transmitV * 1.05; // Normalize F_t over the hemisphere real single = lerp(smooth, rough, roughness); // Rescaled by PI real multiple = roughness * (0.1159 * PI); // Rescaled by PI return single + albedo * multiple; } real3 DiffuseGGX(real3 albedo, real NdotV, real NdotL, real NdotH, real LdotV, real roughness) { // Note that we could save 2 cycles by inlining the multiplication by INV_PI. return INV_PI * DiffuseGGXNoPI(albedo, NdotV, NdotL, NdotH, LdotV, roughness); } //----------------------------------------------------------------------------- // Iridescence //----------------------------------------------------------------------------- // Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html // Evaluation XYZ sensitivity curves in Fourier space real3 EvalSensitivity(real opd, real shift) { // Use Gaussian fits, given by 3 parameters: val, pos and var real phase = 2.0 * PI * opd * 1e-6; real3 val = real3(5.4856e-13, 4.4201e-13, 5.2481e-13); real3 pos = real3(1.6810e+06, 1.7953e+06, 2.2084e+06); real3 var = real3(4.3278e+09, 9.3046e+09, 6.6121e+09); real3 xyz = val * sqrt(2.0 * PI * var) * cos(pos * phase + shift) * exp(-var * phase * phase); xyz.x += 9.7470e-14 * sqrt(2.0 * PI * 4.5282e+09) * cos(2.2399e+06 * phase + shift) * exp(-4.5282e+09 * phase * phase); xyz /= 1.0685e-7; // Convert to linear sRGb color space here. // EvalIridescence works in linear sRGB color space and does not switch... real3 srgb = mul(XYZ_2_REC709_MAT, xyz); return srgb; } // Evaluate the reflectance for a thin-film layer on top of a dielectric medum. real3 EvalIridescence(real eta_1, real cosTheta1, real iridescenceThickness, real3 baseLayerFresnel0, real iorOverBaseLayer = 0.0) { real3 I; // iridescenceThickness unit is micrometer for this equation here. Mean 0.5 is 500nm. real Dinc = 3.0 * iridescenceThickness; // Note: Unlike the code provide with the paper, here we use schlick approximation // Schlick is a very poor approximation when dealing with iridescence to the Fresnel // term and there is no "neutral" value in this unlike in the original paper. // We use Iridescence mask here to allow to have neutral value // Hack: In order to use only one parameter (DInc), we deduced the ior of iridescence from current Dinc iridescenceThickness // and we use mask instead to fade out the effect real eta_2 = lerp(2.0, 1.0, iridescenceThickness); // Following line from original code is not needed for us, it create a discontinuity // Force eta_2 -> eta_1 when Dinc -> 0.0 // real eta_2 = lerp(eta_1, eta_2, smoothstep(0.0, 0.03, Dinc)); // Evaluate the cosTheta on the base layer (Snell law) real sinTheta2Sq = Sq(eta_1 / eta_2) * (1.0 - Sq(cosTheta1)); // Handle TIR: // (Also note that with just testing sinTheta2Sq > 1.0, (1.0 - sinTheta2Sq) can be negative, as emitted instructions // can eg be a mad giving a small negative for (1.0 - sinTheta2Sq), while sinTheta2Sq still testing equal to 1.0), so we actually // test the operand [cosTheta2Sq := (1.0 - sinTheta2Sq)] < 0 directly:) real cosTheta2Sq = (1.0 - sinTheta2Sq); // Or use this "artistic hack" to get more continuity even though wrong (no TIR, continue the effect by mirroring it): // if( cosTheta2Sq < 0.0 ) => { sinTheta2Sq = 2 - sinTheta2Sq; => so cosTheta2Sq = sinTheta2Sq - 1 } // ie don't test and simply do // real cosTheta2Sq = abs(1.0 - sinTheta2Sq); if (cosTheta2Sq < 0.0) I = real3(1.0, 1.0, 1.0); else { real cosTheta2 = sqrt(cosTheta2Sq); // First interface real R0 = IorToFresnel0(eta_2, eta_1); real R12 = F_Schlick(R0, cosTheta1); real R21 = R12; real T121 = 1.0 - R12; real phi12 = 0.0; real phi21 = PI - phi12; // Second interface // The f0 or the base should account for the new computed eta_2 on top. // This is optionally done if we are given the needed current ior over the base layer that is accounted for // in the baseLayerFresnel0 parameter: if (iorOverBaseLayer > 0.0) { // Fresnel0ToIor will give us a ratio of baseIor/topIor, hence we * iorOverBaseLayer to get the baseIor real3 baseIor = iorOverBaseLayer * Fresnel0ToIor(baseLayerFresnel0 + 0.0001); // guard against 1.0 baseLayerFresnel0 = IorToFresnel0(baseIor, eta_2); } real3 R23 = F_Schlick(baseLayerFresnel0, cosTheta2); real phi23 = 0.0; // Phase shift real OPD = Dinc * cosTheta2; real phi = phi21 + phi23; // Compound terms real3 R123 = clamp(R12 * R23, 1e-5, 0.9999); real3 r123 = sqrt(R123); real3 Rs = Sq(T121) * R23 / (real3(1.0, 1.0, 1.0) - R123); // Reflectance term for m = 0 (DC term amplitude) real3 C0 = R12 + Rs; I = C0; // Reflectance term for m > 0 (pairs of diracs) real3 Cm = Rs - T121; for (int m = 1; m <= 2; ++m) { Cm *= r123; real3 Sm = 2.0 * EvalSensitivity(m * OPD, m * phi); //vec3 SmP = 2.0 * evalSensitivity(m*OPD, m*phi2.y); I += Cm * Sm; } // Since out of gamut colors might be produced, negative color values are clamped to 0. I = max(I, float3(0.0, 0.0, 0.0)); } return I; } //----------------------------------------------------------------------------- // Fabric //----------------------------------------------------------------------------- // Ref: https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/ real D_CharlieNoPI(real NdotH, real roughness) { float invR = rcp(roughness); float cos2h = NdotH * NdotH; float sin2h = 1.0 - cos2h; // Note: We have sin^2 so multiply by 0.5 to cancel it return (2.0 + invR) * PositivePow(sin2h, invR * 0.5) / 2.0; } real D_Charlie(real NdotH, real roughness) { return INV_PI * D_CharlieNoPI(NdotH, roughness); } real CharlieL(real x, real r) { r = saturate(r); r = 1.0 - (1.0 - r) * (1.0 - r); float a = lerp(25.3245, 21.5473, r); float b = lerp(3.32435, 3.82987, r); float c = lerp(0.16801, 0.19823, r); float d = lerp(-1.27393, -1.97760, r); float e = lerp(-4.85967, -4.32054, r); return a / (1. + b * PositivePow(x, c)) + d * x + e; } // Note: This version don't include the softening of the paper: Production Friendly Microfacet Sheen BRDF real V_Charlie(real NdotL, real NdotV, real roughness) { real lambdaV = NdotV < 0.5 ? exp(CharlieL(NdotV, roughness)) : exp(2.0 * CharlieL(0.5, roughness) - CharlieL(1.0 - NdotV, roughness)); real lambdaL = NdotL < 0.5 ? exp(CharlieL(NdotL, roughness)) : exp(2.0 * CharlieL(0.5, roughness) - CharlieL(1.0 - NdotL, roughness)); return 1.0 / ((1.0 + lambdaV + lambdaL) * (4.0 * NdotV * NdotL)); } // We use V_Ashikhmin instead of V_Charlie in practice for game due to the cost of V_Charlie real V_Ashikhmin(real NdotL, real NdotV) { // Use soft visibility term introduce in: Crafting a Next-Gen Material Pipeline for The Order : 1886 return 1.0 / (4.0 * (NdotL + NdotV - NdotL * NdotV)); } // A diffuse term use with fabric done by tech artist - empirical real FabricLambertNoPI(real roughness) { return lerp(1.0, 0.5, roughness); } real FabricLambert(real roughness) { return INV_PI * FabricLambertNoPI(roughness); } real G_CookTorrance(real NdotH, real NdotV, real NdotL, real HdotV) { return min(1.0, 2.0 * NdotH * min(NdotV, NdotL) / HdotV); } //----------------------------------------------------------------------------- // Hair //----------------------------------------------------------------------------- //http://web.engr.oregonstate.edu/~mjb/cs519/Projects/Papers/HairRendering.pdf real3 ShiftTangent(real3 T, real3 N, real shift) { return normalize(T + N * shift); } // Note: this is Blinn-Phong, the original paper uses Phong. real3 D_KajiyaKay(real3 T, real3 H, real specularExponent) { real TdotH = dot(T, H); real sinTHSq = saturate(1.0 - TdotH * TdotH); real dirAttn = saturate(TdotH + 1.0); // Evgenii: this seems like a hack? Do we really need this? // Note: Kajiya-Kay is not energy conserving. // We attempt at least some energy conservation by approximately normalizing Blinn-Phong NDF. // We use the formulation with the NdotL. // See http://www.thetenthplanet.de/archives/255. real n = specularExponent; real norm = (n + 2) * rcp(2 * PI); return dirAttn * norm * PositivePow(sinTHSq, 0.5 * n); } #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 || SHADER_API_SWITCH #pragma warning (enable : 3205) // conversion of larger type to smaller #endif #endif // UNITY_BSDF_INCLUDED