using AOT; using System; using System.Threading; using Unity.Burst; using Unity.Collections.LowLevel.Unsafe; using Unity.Jobs.LowLevel.Unsafe; using Unity.Mathematics; namespace Unity.Collections { struct Spinner { int m_value; public void Lock() { while (0 != Interlocked.CompareExchange(ref m_value, 1, 0)) { } Interlocked.MemoryBarrier(); } public void Unlock() { Interlocked.MemoryBarrier(); while (1 != Interlocked.CompareExchange(ref m_value, 0, 1)) { } } } internal struct UnmanagedArray : IDisposable where T : unmanaged { IntPtr m_pointer; int m_length; AllocatorManager.AllocatorHandle m_allocator; public UnmanagedArray(int length, AllocatorManager.AllocatorHandle allocator) { unsafe { m_pointer = (IntPtr)Memory.Unmanaged.Array.Allocate(length, allocator); } m_length = length; m_allocator = allocator; } public void Dispose() { unsafe { Memory.Unmanaged.Free((T*)m_pointer, Allocator.Persistent); } } public unsafe T* GetUnsafePointer() { return (T*)m_pointer; } public ref T this[int index] { get { unsafe { return ref ((T*)m_pointer)[index]; } } } } /// /// An allocator that is fast like a linear allocator, is threadsafe, and automatically invalidates /// all allocations made from it, when "rewound" by the user. /// [BurstCompile] public struct RewindableAllocator : AllocatorManager.IAllocator { [BurstCompatible] internal unsafe struct MemoryBlock : IDisposable { public const int kMaximumAlignment = 16384; // can't align any coarser than this many bytes public byte* m_pointer; // pointer to contiguous memory public long m_bytes; // how many bytes of contiguous memory it points to public long m_current; // next byte to give out, when people "allocate" from this block public long m_allocations; // how many allocations have been made from this block, so far? public MemoryBlock(long bytes) { m_pointer = (byte*)Memory.Unmanaged.Allocate(bytes, kMaximumAlignment, Allocator.Persistent); m_bytes = bytes; m_current = 0; m_allocations = 0; } public void Rewind() { m_current = 0; m_allocations = 0; } public void Dispose() { Memory.Unmanaged.Free(m_pointer, Allocator.Persistent); m_pointer = null; m_bytes = 0; m_current = 0; m_allocations = 0; } public int TryAllocate(ref AllocatorManager.Block block) { // Make the alignment multiple of cacheline size var alignment = math.max(JobsUtility.CacheLineSize, block.Alignment); var extra = alignment != JobsUtility.CacheLineSize ? 1 : 0; var cachelineMask = JobsUtility.CacheLineSize - 1; if (extra == 1) { alignment = (alignment + cachelineMask) & ~cachelineMask; } // Adjust the size to be multiple of alignment, add extra alignment // to size if alignment is more than cacheline size var mask = alignment - 1L; var size = (block.Bytes + extra * alignment + mask) & ~mask; var begin = Interlocked.Add(ref m_current, size) - size; begin = (begin + mask) & ~mask; // align the offset here if (begin + block.Bytes > m_bytes) return AllocatorManager.kErrorBufferOverflow; block.Range.Pointer = (IntPtr)(m_pointer + begin); block.AllocatedItems = block.Range.Items; Interlocked.Increment(ref m_allocations); return AllocatorManager.kErrorNone; } public bool Contains(IntPtr ptr) { unsafe { void* pointer = (void*)ptr; return (pointer >= m_pointer) && (pointer < m_pointer + m_current); } } }; Spinner m_spinner; AllocatorManager.AllocatorHandle m_handle; UnmanagedArray m_block; int m_best; // block we expect is best to allocate from next int m_last; // highest-index block that has memory to allocate from int m_used; // highest-index block that we actually allocated from, since last rewind bool m_enableBlockFree; // flag indicating if allocator enables individual block free /// /// Initializes the allocator. Must be called before first use. /// /// The initial capacity of the allocator, in bytes public void Initialize(int initialSizeInBytes, bool enableBlockFree = false) { m_spinner = default; m_block = new UnmanagedArray(64, Allocator.Persistent); m_block[0] = new MemoryBlock(initialSizeInBytes); m_last = m_used = m_best = 0; m_enableBlockFree = enableBlockFree; } /// /// Property to get and set enable block free flag, a flag indicating whether allocator enables individual block free. /// public bool EnableBlockFree { get => m_enableBlockFree; set => m_enableBlockFree = value; } /// /// Retrieves the number of memory blocks that the allocator has requested from the system. /// public int BlocksAllocated => (int)(m_last + 1); /// /// Retrieves the size of the initial memory block, as requested in the Initialize function. /// public int InitialSizeInBytes => (int)(m_block[0].m_bytes); /// /// Rewind the allocator; invalidate all allocations made from it, and potentially also free memory blocks /// it has allocated from the system. /// public void Rewind() { if (JobsUtility.IsExecutingJob) throw new InvalidOperationException("You cannot Rewind a RewindableAllocator from a Job."); m_handle.Rewind(); // bump the allocator handle version, invalidate all dependents while (m_last > m_used) // *delete* all blocks we didn't even allocate from this time around. m_block[m_last--].Dispose(); while (m_used > 0) // simply *rewind* all blocks we used in this update, to avoid allocating again, every update. m_block[m_used--].Rewind(); m_block[0].Rewind(); } /// /// Dispose the allocator. This must be called to free the memory blocks that were allocated from the system. /// public void Dispose() { if (JobsUtility.IsExecutingJob) throw new InvalidOperationException("You cannot Dispose a RewindableAllocator from a Job."); m_used = 0; // so that we delete all blocks in Rewind() on the next line Rewind(); m_block[0].Dispose(); m_block.Dispose(); m_last = m_used = m_best = 0; } /// /// All allocators must implement this property, in order to be installed in the custom allocator table. /// [NotBurstCompatible] public AllocatorManager.TryFunction Function => Try; /// /// Try to allocate, free, or reallocate a block of memory. This is an internal function, and /// is not generally called by the user. /// /// The memory block to allocate, free, or reallocate public int Try(ref AllocatorManager.Block block) { if (block.Range.Pointer == IntPtr.Zero) { // first, try to allocate from the block that succeeded last time, which we expect is likely to succeed again. var error = m_block[m_best].TryAllocate(ref block); if (error == AllocatorManager.kErrorNone) return error; // if that fails, check all the blocks to see if any of them have enough memory m_spinner.Lock(); int best; for (best = 0; best <= m_last; ++best) { error = m_block[best].TryAllocate(ref block); if (error == AllocatorManager.kErrorNone) { m_used = best > m_used ? best : m_used; m_best = best; m_spinner.Unlock(); return error; } } // if that fails, allocate another block that's guaranteed big enough, and allocate from it. var bytes = math.max(m_block[0].m_bytes << best, math.ceilpow2(block.Bytes)); // if user suddenly asks for 1GB, skip smaller sizes m_block[best] = new MemoryBlock(bytes); error = m_block[best].TryAllocate(ref block); m_best = best; m_used = best; m_last = best; m_spinner.Unlock(); return error; } // To free memory, no-op unless allocator enables individual block to be freed if (block.Range.Items == 0) { if (m_enableBlockFree) { m_spinner.Lock(); if (m_block[m_best].Contains(block.Range.Pointer)) if (0 == Interlocked.Decrement(ref m_block[m_best].m_allocations)) m_block[m_best].Rewind(); m_spinner.Unlock(); } return 0; // we could check to see if the pointer belongs to us, if we want to be strict about it. } return -1; } [BurstCompile] [MonoPInvokeCallback(typeof(AllocatorManager.TryFunction))] internal static int Try(IntPtr state, ref AllocatorManager.Block block) { unsafe { return ((RewindableAllocator*)state)->Try(ref block); } } /// /// Retrieve the AllocatorHandle associated with this allocator. The handle is used as an index into a /// global table, for times when a reference to the allocator object isn't available. /// /// The AllocatorHandle retrieved. public AllocatorManager.AllocatorHandle Handle { get { return m_handle; } set { m_handle = value; } } /// /// Retrieve the Allocator associated with this allocator. /// /// The Allocator retrieved. public Allocator ToAllocator { get { return m_handle.ToAllocator; } } /// /// Check whether this AllocatorHandle is a custom allocator. /// /// True if this AllocatorHandle is a custom allocator. public bool IsCustomAllocator { get { return m_handle.IsCustomAllocator; } } /// /// Allocate a NativeArray of type T from memory that is guaranteed to remain valid until the end of the /// next Update of this World. There is no need to Dispose the NativeArray so allocated. It is not possible /// to free the memory by Disposing it - it is automatically freed after the end of the next Update for this /// World. /// /// The element type of the NativeArray to allocate. /// The length of the NativeArray to allocate, measured in elements. /// The NativeArray allocated by this function. [BurstCompatible(GenericTypeArguments = new[] { typeof(int) })] public NativeArray AllocateNativeArray(int length) where T : struct { var container = new NativeArray(); unsafe { container.m_Buffer = this.AllocateStruct(default(T), length); } container.m_Length = length; container.m_AllocatorLabel = Allocator.None; #if ENABLE_UNITY_COLLECTIONS_CHECKS container.m_MinIndex = 0; container.m_MaxIndex = length - 1; container.m_Safety = CollectionHelper.CreateSafetyHandle(ToAllocator); #if REMOVE_DISPOSE_SENTINEL #else container.m_DisposeSentinel = null; #endif CollectionHelper.SetStaticSafetyId>(ref container.m_Safety, ref NativeArrayExtensions.NativeArrayStaticId.s_staticSafetyId.Data); Handle.AddSafetyHandle(container.m_Safety); #endif return container; } /// /// Allocate a NativeList of type T from memory that is guaranteed to remain valid until the end of the /// next Update of this World. There is no need to Dispose the NativeList so allocated. It is not possible /// to free the memory by Disposing it - it is automatically freed after the end of the next Update for this /// World. The NativeList must be initialized with its maximum capacity; if it were to dynamically resize, /// up to 1/2 of the total final capacity would be wasted, because the memory can't be dynamically freed. /// /// The element type of the NativeList to allocate. /// The capacity of the NativeList to allocate, measured in elements. /// The NativeList allocated by this function. [BurstCompatible(GenericTypeArguments = new[] { typeof(int) })] public NativeList AllocateNativeList(int capacity) where T : unmanaged { var container = new NativeList(); unsafe { container.m_ListData = this.Allocate(default(UnsafeList), 1); container.m_ListData->Ptr = this.Allocate(default(T), capacity); container.m_ListData->m_capacity = capacity; container.m_ListData->m_length = 0; container.m_ListData->Allocator = Allocator.None; } container.m_DeprecatedAllocator = Allocator.None; #if ENABLE_UNITY_COLLECTIONS_CHECKS container.m_Safety = CollectionHelper.CreateSafetyHandle(ToAllocator); #if REMOVE_DISPOSE_SENTINEL #else container.m_DisposeSentinel = null; #endif CollectionHelper.SetStaticSafetyId>(ref container.m_Safety, ref NativeList.s_staticSafetyId.Data); AtomicSafetyHandle.SetBumpSecondaryVersionOnScheduleWrite(container.m_Safety, true); Handle.AddSafetyHandle(container.m_Safety); #endif return container; } } }