using UnityEngine;
using System.Collections.Generic;
using System.Data.Common;
namespace Unity.Cinemachine
{
///
/// The output of the Cinemachine engine for a specific virtual camera. The information
/// in this struct can be blended, and provides what is needed to calculate an
/// appropriate camera position, orientation, and lens setting.
///
/// Raw values are what the Cinemachine behaviours generate. The correction channel
/// holds perturbations to the raw values - e.g. noise or smoothing, or obstacle
/// avoidance corrections. Corrections are not considered when making time-based
/// calculations such as damping.
///
/// The Final position and orientation is the combination of the raw values and
/// their corrections.
///
public struct CameraState
{
///
/// Camera Lens Settings.
///
public LensSettings Lens;
///
/// Which way is up. World space unit vector. Must have a length of 1.
///
public Vector3 ReferenceUp;
///
/// The world space focus point of the camera. What the camera wants to look at.
/// There is a special constant define to represent "nothing". Be careful to
/// check for that (or check the HasLookAt property).
///
public Vector3 ReferenceLookAt;
///
/// This constant represents "no point in space" or "no direction".
///
public static Vector3 kNoPoint = new Vector3(float.NaN, float.NaN, float.NaN);
///
/// Raw (un-corrected) world space position of this camera
///
public Vector3 RawPosition;
///
/// Raw (un-corrected) world space orientation of this camera
///
public Quaternion RawOrientation;
/// This is a way for the Body component to set a bypass hint for aim damping,
/// useful for when the body needs to rotate its point of view, but does not
/// want interference from the aim damping. The value is the amount that the camera
/// has been rotated, in world coords.
public Quaternion RotationDampingBypass;
///
/// Subjective estimation of how "good" the shot is.
/// Larger values mean better quality. Default is 1.
///
public float ShotQuality;
///
/// Position correction. This will be added to the raw position.
/// This value doesn't get fed back into the system when calculating the next frame.
/// Can be noise, or smoothing, or both, or something else.
///
public Vector3 PositionCorrection;
///
/// Orientation correction. This will be added to the raw orientation.
/// This value doesn't get fed back into the system when calculating the next frame.
/// Can be noise, or smoothing, or both, or something else.
///
public Quaternion OrientationCorrection;
///
/// These hints can be or'ed together to influence how blending is done, and how state
/// is applied to the camera
///
public enum BlendHints
{
/// Normal state blending
Nothing = 0,
/// Spherical blend about the LookAt target (if any)
SphericalPositionBlend = CinemachineCore.BlendHints.SphericalPosition,
/// Cylindrical blend about the LookAt target (if any)
CylindricalPositionBlend = CinemachineCore.BlendHints.CylindricalPosition,
/// Radial blend when the LookAt target changes(if any)
ScreenSpaceAimWhenTargetsDiffer = CinemachineCore.BlendHints.ScreenSpaceAimWhenTargetsDiffer,
/// When this virtual camera goes Live, attempt to force the position to be the same
/// as the current position of the outgoing Camera
InheritPosition = CinemachineCore.BlendHints.InheritPosition,
/// Ignore the LookAt target and just slerp the orientation
IgnoreLookAtTarget = CinemachineCore.BlendHints.IgnoreTarget,
/// When blending out from this camera, use a snapshot of its outgoing state instead of a live state
FreezeWhenBlendingOut = CinemachineCore.BlendHints.FreezeWhenBlendingOut,
/// This state does not affect the camera position
NoPosition = 1 << 16,
/// This state does not affect the camera rotation
NoOrientation = 2 << 16,
/// Combination of NoPosition and NoOrientation
NoTransform = NoPosition | NoOrientation,
/// This state does not affect the lens
NoLens = 4 << 16,
}
///
/// These hints can be or'ed together to influence how blending is done, and how state
/// is applied to the camera
///
public BlendHints BlendHint;
///
/// State with default values
///
public static CameraState Default => new CameraState
{
Lens = LensSettings.Default,
ReferenceUp = Vector3.up,
ReferenceLookAt = kNoPoint,
RawPosition = Vector3.zero,
RawOrientation = Quaternion.identity,
ShotQuality = 1,
PositionCorrection = Vector3.zero,
OrientationCorrection = Quaternion.identity,
RotationDampingBypass = Quaternion.identity,
BlendHint = BlendHints.Nothing
};
///
/// Custom Blendables are a way to attach opaque custom data to a CameraState and have
/// their weights blend along with the camera weights. For efficiency, a fixed number of slots
/// are provided, plus a (more expensive) overflow list.
/// The base system manages but otherwise ignores this data - it is intended for
/// extension modules.
///
public struct CustomBlendableItems
{
/// Opaque structure represent extra blendable stuff and its weight.
/// The base system ignores this data - it is intended for extension modules
public struct Item
{
/// The custom stuff that the extension module will consider
public Object Custom;
/// The weight of the custom stuff. Must be 0...1
public float Weight;
};
// This is to avoid excessive GC allocs
internal Item m_Item0;
internal Item m_Item1;
internal Item m_Item2;
internal Item m_Item3;
internal List- m_Overflow;
/// The number of custom blendable items that will be applied to the camera.
/// The base system manages but otherwise ignores this data - it is intended for
/// extension modules
internal int NumItems;
}
///
/// Custom Blendables are a way to attach opaque custom data to a CameraState and have
/// their weights blend along with the camera weights. For efficiency, a fixed number of slots
/// are provided, plus a (more expensive) overflow list.
/// The base system manages but otherwise ignores this data - it is intended for
/// extension modules.
///
internal CustomBlendableItems CustomBlendables;
/// Add a custom blendable to the pot for eventual application to the camera.
/// The base system manages but otherwise ignores this data - it is intended for
/// extension modules
/// The custom blendable to add. If b.m_Custom is the same as an
/// already-added custom blendable, then they will be merged and the weights combined.
public void AddCustomBlendable(CustomBlendableItems.Item b)
{
// Attempt to merge common blendables to avoid growth
var index = this.FindCustomBlendable(b.Custom);
if (index >= 0)
b.Weight += this.GetCustomBlendable(index).Weight;
else
index = CustomBlendables.NumItems++;
switch (index)
{
case 0: CustomBlendables.m_Item0 = b; break;
case 1: CustomBlendables.m_Item1 = b; break;
case 2: CustomBlendables.m_Item2 = b; break;
case 3: CustomBlendables.m_Item3 = b; break;
default:
{
index -= 4;
CustomBlendables.m_Overflow ??= new();
if (index < CustomBlendables.m_Overflow.Count)
CustomBlendables.m_Overflow[index] = b;
else
CustomBlendables.m_Overflow.Add(b);
break;
}
}
}
/// Intelligently blend the contents of two states.
/// The first state, corresponding to t=0
/// The second state, corresponding to t=1
/// How much to interpolate. Internally clamped to 0..1
/// Linearly interpolated CameraState
public static CameraState Lerp(in CameraState stateA, in CameraState stateB, float t)
{
t = Mathf.Clamp01(t);
float adjustedT = t;
CameraState state = new ();
// Combine the blend hints intelligently
if (((stateA.BlendHint & stateB.BlendHint) & BlendHints.NoPosition) != 0)
state.BlendHint |= BlendHints.NoPosition;
if (((stateA.BlendHint & stateB.BlendHint) & BlendHints.NoOrientation) != 0)
state.BlendHint |= BlendHints.NoOrientation;
if (((stateA.BlendHint & stateB.BlendHint) & BlendHints.NoLens) != 0)
state.BlendHint |= BlendHints.NoLens;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.SphericalPositionBlend) != 0)
state.BlendHint |= BlendHints.SphericalPositionBlend;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.CylindricalPositionBlend) != 0)
state.BlendHint |= BlendHints.CylindricalPositionBlend;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.FreezeWhenBlendingOut) != 0)
state.BlendHint |= BlendHints.FreezeWhenBlendingOut;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.NoLens) == 0)
state.Lens = LensSettings.Lerp(stateA.Lens, stateB.Lens, t);
else if (((stateA.BlendHint & stateB.BlendHint) & BlendHints.NoLens) == 0)
{
if ((stateA.BlendHint & BlendHints.NoLens) != 0)
state.Lens = stateB.Lens;
else
state.Lens = stateA.Lens;
}
state.ReferenceUp = Vector3.Slerp(stateA.ReferenceUp, stateB.ReferenceUp, t);
state.ShotQuality = Mathf.Lerp(stateA.ShotQuality, stateB.ShotQuality, t);
state.PositionCorrection = ApplyPosBlendHint(
stateA.PositionCorrection, stateA.BlendHint,
stateB.PositionCorrection, stateB.BlendHint,
state.PositionCorrection,
Vector3.Lerp(stateA.PositionCorrection, stateB.PositionCorrection, t));
state.OrientationCorrection = ApplyRotBlendHint(
stateA.OrientationCorrection, stateA.BlendHint,
stateB.OrientationCorrection, stateB.BlendHint,
state.OrientationCorrection,
Quaternion.Slerp(stateA.OrientationCorrection, stateB.OrientationCorrection, t));
// LookAt target
if (!stateA.HasLookAt() || !stateB.HasLookAt())
state.ReferenceLookAt = kNoPoint;
else
{
// Re-interpolate FOV to preserve target composition, if possible
float fovA = stateA.Lens.FieldOfView;
float fovB = stateB.Lens.FieldOfView;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.NoLens) == 0
&& !state.Lens.Orthographic && !Mathf.Approximately(fovA, fovB))
{
LensSettings lens = state.Lens;
lens.FieldOfView = InterpolateFOV(
fovA, fovB,
Mathf.Max((stateA.ReferenceLookAt - stateA.GetCorrectedPosition()).magnitude, stateA.Lens.NearClipPlane),
Mathf.Max((stateB.ReferenceLookAt - stateB.GetCorrectedPosition()).magnitude, stateB.Lens.NearClipPlane), t);
state.Lens = lens;
// Make sure we preserve the screen composition through FOV changes
adjustedT = Mathf.Abs((lens.FieldOfView - fovA) / (fovB - fovA));
}
// Linear interpolation of lookAt target point
state.ReferenceLookAt = Vector3.Lerp(stateA.ReferenceLookAt, stateB.ReferenceLookAt, adjustedT);
}
// Raw position
state.RawPosition = ApplyPosBlendHint(
stateA.RawPosition, stateA.BlendHint,
stateB.RawPosition, stateB.BlendHint,
state.RawPosition, InterpolatePosition(
stateA.RawPosition, stateA.ReferenceLookAt,
stateB.RawPosition, stateB.ReferenceLookAt,
t, state.BlendHint, state.ReferenceUp));
// Interpolate the LookAt in Screen Space if requested
if (state.HasLookAt()
&& ((stateA.BlendHint | stateB.BlendHint) & BlendHints.ScreenSpaceAimWhenTargetsDiffer) != 0)
{
state.ReferenceLookAt = state.RawPosition + Vector3.Slerp(
stateA.ReferenceLookAt - state.RawPosition,
stateB.ReferenceLookAt - state.RawPosition, adjustedT);
}
// Clever orientation interpolation
Quaternion newOrient = state.RawOrientation;
if (((stateA.BlendHint | stateB.BlendHint) & BlendHints.NoOrientation) == 0)
{
Vector3 dirTarget = Vector3.zero;
if (state.HasLookAt())//&& ((stateA.BlendHint | stateB.BlendHint) & BlendHints.ScreenSpaceAimWhenTargetsDiffer) == 0)
{
// If orientations are different, use LookAt to blend them
float angle = Quaternion.Angle(stateA.RawOrientation, stateB.RawOrientation);
if (angle > UnityVectorExtensions.Epsilon)
dirTarget = state.ReferenceLookAt - state.GetCorrectedPosition();
}
if (dirTarget.AlmostZero()
|| ((stateA.BlendHint | stateB.BlendHint) & BlendHints.IgnoreLookAtTarget) != 0)
{
// Don't know what we're looking at - can only slerp
newOrient = Quaternion.Slerp(stateA.RawOrientation, stateB.RawOrientation, t);
}
else
{
// Rotate while preserving our lookAt target
var up = state.ReferenceUp;
dirTarget.Normalize();
if (Vector3.Cross(dirTarget, up).AlmostZero())
{
// Looking up or down at the pole
newOrient = Quaternion.Slerp(stateA.RawOrientation, stateB.RawOrientation, t);
up = newOrient * Vector3.up;
}
// Blend the desired offsets from center
newOrient = Quaternion.LookRotation(dirTarget, up);
var deltaA = -stateA.RawOrientation.GetCameraRotationToTarget(
stateA.ReferenceLookAt - stateA.GetCorrectedPosition(), up);
var deltaB = -stateB.RawOrientation.GetCameraRotationToTarget(
stateB.ReferenceLookAt - stateB.GetCorrectedPosition(), up);
newOrient = newOrient.ApplyCameraRotation(Vector2.Lerp(deltaA, deltaB, adjustedT), up);
}
}
state.RawOrientation = ApplyRotBlendHint(
stateA.RawOrientation, stateA.BlendHint,
stateB.RawOrientation, stateB.BlendHint,
state.RawOrientation, newOrient);
// Accumulate the custom blendables and apply the weights
for (int i = 0; i < stateA.CustomBlendables.NumItems; ++i)
{
var b = stateA.GetCustomBlendable(i);
b.Weight *= (1-t);
if (b.Weight > 0)
state.AddCustomBlendable(b);
}
for (int i = 0; i < stateB.CustomBlendables.NumItems; ++i)
{
var b = stateB.GetCustomBlendable(i);
b.Weight *= t;
if (b.Weight > 0)
state.AddCustomBlendable(b);
}
return state;
}
static float InterpolateFOV(float fovA, float fovB, float dA, float dB, float t)
{
// We interpolate shot height
float hA = dA * 2f * Mathf.Tan(fovA * Mathf.Deg2Rad / 2f);
float hB = dB * 2f * Mathf.Tan(fovB * Mathf.Deg2Rad / 2f);
float h = Mathf.Lerp(hA, hB, t);
float fov = 179f;
float d = Mathf.Lerp(dA, dB, t);
if (d > UnityVectorExtensions.Epsilon)
fov = 2f * Mathf.Atan(h / (2 * d)) * Mathf.Rad2Deg;
return Mathf.Clamp(fov, Mathf.Min(fovA, fovB), Mathf.Max(fovA, fovB));
}
static Vector3 ApplyPosBlendHint(
Vector3 posA, BlendHints hintA,
Vector3 posB, BlendHints hintB,
Vector3 original, Vector3 blended)
{
if (((hintA | hintB) & BlendHints.NoPosition) == 0)
return blended;
if (((hintA & hintB) & BlendHints.NoPosition) != 0)
return original;
if ((hintA & BlendHints.NoPosition) != 0)
return posB;
return posA;
}
static Quaternion ApplyRotBlendHint(
Quaternion rotA, BlendHints hintA,
Quaternion rotB, BlendHints hintB,
Quaternion original, Quaternion blended)
{
if (((hintA | hintB) & BlendHints.NoOrientation) == 0)
return blended;
if (((hintA & hintB) & BlendHints.NoOrientation) != 0)
return original;
if ((hintA & BlendHints.NoOrientation) != 0)
return rotB;
return rotA;
}
static Vector3 InterpolatePosition(
Vector3 posA, Vector3 pivotA,
Vector3 posB, Vector3 pivotB,
float t,
BlendHints blendHint, Vector3 up)
{
#pragma warning disable 1718 // comparison made to same variable
if (pivotA == pivotA && pivotB == pivotB) // check for NaN
#pragma warning restore 1718
{
if ((blendHint & BlendHints.CylindricalPositionBlend) != 0)
{
// Cylindrical interpolation about pivot
var a = Vector3.ProjectOnPlane(posA - pivotA, up);
var b = Vector3.ProjectOnPlane(posB - pivotB, up);
var c = Vector3.Slerp(a, b, t);
posA = (posA - a) + c;
posB = (posB - b) + c;
}
else if ((blendHint & BlendHints.SphericalPositionBlend) != 0)
{
// Spherical interpolation about pivot
var c = Vector3.Slerp(posA - pivotA, posB - pivotB, t);
posA = pivotA + c;
posB = pivotB + c;
}
}
return Vector3.Lerp(posA, posB, t);
}
}
///
/// Extension methods for CameraState.
///
public static class CameraStateExtensions
{
#pragma warning disable 1718 // comparison made to same variable
/// Returns true if this state has a valid ReferenceLookAt value.
/// State to check.
/// True, if state has a valid ReferenceLookAt value. False, otherwise.
public static bool HasLookAt(this CameraState s) => s.ReferenceLookAt == s.ReferenceLookAt; // will be false if NaN
#pragma warning restore 1718
/// Position with correction applied.
/// State to check.
/// Position with correction applied.
public static Vector3 GetCorrectedPosition(this CameraState s) => s.RawPosition + s.PositionCorrection;
/// Orientation with correction applied.
/// State to check.
/// Orientation with correction applied.
public static Quaternion GetCorrectedOrientation(this CameraState s) => s.RawOrientation * s.OrientationCorrection;
/// Position with correction applied. This is what the final camera gets.
/// State to check.
/// Position with correction applied.
public static Vector3 GetFinalPosition(this CameraState s) => s.RawPosition + s.PositionCorrection;
/// Orientation with correction and dutch applied. This is what the final camera gets.
/// State to check
/// Orientation with correction and dutch applied.
public static Quaternion GetFinalOrientation(this CameraState s)
{
if (Mathf.Abs(s.Lens.Dutch) > UnityVectorExtensions.Epsilon)
return s.GetCorrectedOrientation() * Quaternion.AngleAxis(s.Lens.Dutch, Vector3.forward);
return s.GetCorrectedOrientation();
}
/// Get the number of custom blendable items that have been added to this CameraState
/// State to check.
/// The number of custom blendable items added.
public static int GetNumCustomBlendables(this CameraState s) => s.CustomBlendables.NumItems;
/// Get a custom blendable that will be applied to the camera.
/// The base system manages but otherwise ignores this data - it is intended for
/// extension modules
/// State to check.
/// Which one to get. Must be in range [0...NumCustomBlendables)
/// The custom blendable at the specified index.
public static CameraState.CustomBlendableItems.Item GetCustomBlendable(this CameraState s, int index)
{
switch (index)
{
case 0: return s.CustomBlendables.m_Item0;
case 1: return s.CustomBlendables.m_Item1;
case 2: return s.CustomBlendables.m_Item2;
case 3: return s.CustomBlendables.m_Item3;
default:
{
index -= 4;
if (s.CustomBlendables.m_Overflow != null && index < s.CustomBlendables.m_Overflow.Count)
return s.CustomBlendables.m_Overflow[index];
return default;
}
}
}
/// Returns the index of the custom blendable that is associated with the input.
/// State to check.
/// The object with which the returned custom blendable index is associated.
/// The index of the custom blendable that is associated with the input.
public static int FindCustomBlendable(this CameraState s, Object custom)
{
if (s.CustomBlendables.m_Item0.Custom == custom)
return 0;
if (s.CustomBlendables.m_Item1.Custom == custom)
return 1;
if (s.CustomBlendables.m_Item2.Custom == custom)
return 2;
if (s.CustomBlendables.m_Item3.Custom == custom)
return 3;
if (s.CustomBlendables.m_Overflow != null)
{
for (int i = 0; i < s.CustomBlendables.m_Overflow.Count; ++i)
if (s.CustomBlendables.m_Overflow[i].Custom == custom)
return i + 4;
}
return -1;
}
///
/// Checks whether the LookAt point falls within the camera's frustum
///
/// Camera state to check
/// True if target is outside the camera frustum
public static bool IsTargetOffscreen(this CameraState state)
{
if (state.HasLookAt())
{
var dir = state.ReferenceLookAt - state.GetCorrectedPosition();
dir = Quaternion.Inverse(state.GetCorrectedOrientation()) * dir;
if (state.Lens.Orthographic)
{
if (Mathf.Abs(dir.y) > state.Lens.OrthographicSize)
return true;
if (Mathf.Abs(dir.x) > state.Lens.OrthographicSize * state.Lens.Aspect)
return true;
}
else
{
var fov = state.Lens.FieldOfView / 2;
var angle = UnityVectorExtensions.Angle(dir.ProjectOntoPlane(Vector3.right), Vector3.forward);
if (angle > fov)
return true;
fov = Mathf.Rad2Deg * Mathf.Atan(Mathf.Tan(fov * Mathf.Deg2Rad) * state.Lens.Aspect);
angle = UnityVectorExtensions.Angle(dir.ProjectOntoPlane(Vector3.up), Vector3.forward);
if (angle > fov)
return true;
}
}
return false;
}
}
}