#ifndef UNITY_GEOMETRICTOOLS_INCLUDED #define UNITY_GEOMETRICTOOLS_INCLUDED //----------------------------------------------------------------------------- // Transform functions //----------------------------------------------------------------------------- // Rotate around a pivot point and an axis float3 Rotate(float3 pivot, float3 position, float3 rotationAxis, float angle) { rotationAxis = normalize(rotationAxis); float3 cpa = pivot + rotationAxis * dot(rotationAxis, position - pivot); return cpa + ((position - cpa) * cos(angle) + cross(rotationAxis, (position - cpa)) * sin(angle)); } float3x3 RotationFromAxisAngle(float3 A, float sinAngle, float cosAngle) { float c = cosAngle; float s = sinAngle; return float3x3(A.x * A.x * (1 - c) + c, A.x * A.y * (1 - c) - A.z * s, A.x * A.z * (1 - c) + A.y * s, A.x * A.y * (1 - c) + A.z * s, A.y * A.y * (1 - c) + c, A.y * A.z * (1 - c) - A.x * s, A.x * A.z * (1 - c) - A.y * s, A.y * A.z * (1 - c) + A.x * s, A.z * A.z * (1 - c) + c); } //----------------------------------------------------------------------------- // Solver //----------------------------------------------------------------------------- // Solves the quadratic equation of the form: a*t^2 + b*t + c = 0. // Returns 'false' if there are no real roots, 'true' otherwise. // Ensures that roots.x <= roots.y. bool SolveQuadraticEquation(float a, float b, float c, out float2 roots) { float det = Sq(b) - 4.0 * a * c; float sqrtDet = sqrt(det); roots.x = (-b - sign(a) * sqrtDet) / (2.0 * a); roots.y = (-b + sign(a) * sqrtDet) / (2.0 * a); return (det >= 0.0); } //----------------------------------------------------------------------------- // Intersection functions //----------------------------------------------------------------------------- bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection, float3 boxMin, float3 boxMax, float tMin, float tMax, out float tEntr, out float tExit) { // Could be precomputed. Clamp to avoid INF. clamp() is a single ALU on GCN. // rcp(FLT_EPS) = 16,777,216, which is large enough for our purposes, // yet doesn't cause a lot of numerical issues associated with FLT_MAX. float3 rayDirInv = clamp(rcp(rayDirection), -rcp(FLT_EPS), rcp(FLT_EPS)); // Perform ray-slab intersection (component-wise). float3 t0 = boxMin * rayDirInv - (rayOrigin * rayDirInv); float3 t1 = boxMax * rayDirInv - (rayOrigin * rayDirInv); // Find the closest/farthest distance (component-wise). float3 tSlabEntr = min(t0, t1); float3 tSlabExit = max(t0, t1); // Find the farthest entry and the nearest exit. tEntr = Max3(tSlabEntr.x, tSlabEntr.y, tSlabEntr.z); tExit = Min3(tSlabExit.x, tSlabExit.y, tSlabExit.z); // Clamp to the range. tEntr = max(tEntr, tMin); tExit = min(tExit, tMax); return tEntr < tExit; } // This simplified version assume that we care about the result only when we are inside the box float IntersectRayAABBSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax) { float3 invDir = rcp(dir); // Find the ray intersection with box plane float3 rbmin = (boxMin - start) * invDir; float3 rbmax = (boxMax - start) * invDir; float3 rbminmax = float3((dir.x > 0.0) ? rbmax.x : rbmin.x, (dir.y > 0.0) ? rbmax.y : rbmin.y, (dir.z > 0.0) ? rbmax.z : rbmin.z); return min(min(rbminmax.x, rbminmax.y), rbminmax.z); } // Assume Sphere is at the origin (i.e start = position - spherePosition) bool IntersectRaySphere(float3 start, float3 dir, float radius, out float2 intersections) { float a = dot(dir, dir); float b = dot(dir, start) * 2.0; float c = dot(start, start) - radius * radius; return SolveQuadraticEquation(a, b, c, intersections); } // This simplified version assume that we care about the result only when we are inside the sphere // Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized // Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html float IntersectRaySphereSimple(float3 start, float3 dir, float radius) { float b = dot(dir, start) * 2.0; float c = dot(start, start) - radius * radius; float discriminant = b * b - 4.0 * c; return abs(sqrt(discriminant) - b) * 0.5; } float3 IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planeOrigin, float3 planeNormal) { float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection); return rayOrigin + rayDirection * dist; } // Same as above but return intersection distance and true / false if the ray hit/miss bool IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planePosition, float3 planeNormal, out float t) { bool res = false; t = -1.0; float denom = dot(planeNormal, rayDirection); if (abs(denom) > 1e-5) { float3 d = planePosition - rayOrigin; t = dot(d, planeNormal) / denom; res = (t >= 0); } return res; } // Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y). // Returns parametric distances 'tEntr' and 'tExit' along the ray, // subject to constraints 'tMin' and 'tMax'. bool IntersectRayCone(float3 rayOrigin, float3 rayDirection, float3 coneOrigin, float3 coneDirection, float3 coneAxisX, float3 coneAxisY, float tMin, float tMax, out float tEntr, out float tExit) { // Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis. float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection); float3 o = mul(rotMat, rayOrigin - coneOrigin); float3 d = mul(rotMat, rayDirection); // Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0. // Cone axes are premultiplied with (h/r). // Set up the quadratic equation: a*t^2 + b*t + c = 0. float a = d.x * d.x + d.y * d.y - d.z * d.z; float b = o.x * d.x + o.y * d.y - o.z * d.z; float c = o.x * o.x + o.y * o.y - o.z * o.z; float2 roots; // Check whether we have at least 1 root. bool hit = SolveQuadraticEquation(a, 2 * b, c, roots); tEntr = roots.x; tExit = roots.y; float3 pEntr = o + tEntr * d; float3 pExit = o + tExit * d; // Clip the negative cone. bool pEntrNeg = pEntr.z < 0; bool pExitNeg = pExit.z < 0; if (pEntrNeg && pExitNeg) { hit = false; } if (pEntrNeg) { tEntr = tExit; tExit = tMax; } if (pExitNeg) { tExit = tEntr; tEntr = tMin; } // Clamp using the values passed into the function. tEntr = clamp(tEntr, tMin, tMax); tExit = clamp(tExit, tMin, tMax); // Check for grazing intersections. if (tEntr == tExit) { hit = false; } return hit; } bool IntersectSphereAABB(float3 position, float radius, float3 aabbMin, float3 aabbMax) { float x = max(aabbMin.x, min(position.x, aabbMax.x)); float y = max(aabbMin.y, min(position.y, aabbMax.y)); float z = max(aabbMin.z, min(position.z, aabbMax.z)); float distance2 = ((x - position.x) * (x - position.x) + (y - position.y) * (y - position.y) + (z - position.z) * (z - position.z)); return distance2 < radius * radius; } //----------------------------------------------------------------------------- // Miscellaneous functions //----------------------------------------------------------------------------- // Box is AABB float DistancePointBox(float3 position, float3 boxMin, float3 boxMax) { return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0))); } float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal) { return position - (dot(position - planePosition, planeNormal) * planeNormal); } // Plane equation: {(a, b, c) = N, d = -dot(N, P)}. // Returns the distance from the plane to the point 'p' along the normal. // Positive -> in front (above), negative -> behind (below). float DistanceFromPlane(float3 p, float4 plane) { return dot(float4(p, 1.0), plane); } // Returns 'true' if the triangle is outside of the frustum. // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) { bool outside = false; for (int i = 0; i < numPlanes; i++) { // If all 3 points are behind any of the planes, we cull. outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]), DistanceFromPlane(p1, frustumPlanes[i]), DistanceFromPlane(p2, frustumPlanes[i])) < epsilon; } return outside; } // Returns 'true' if the edge of the triangle is outside of the frustum. // The edges are defined s.t. they are on the opposite side of the point with the given index. // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. //output packing: // x,y,z - one component per triangle edge, true if outside, false otherwise // w - true if entire triangle is outside of at least 1 plane of the frustum, false otherwise bool4 CullFullTriangleAndEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) { bool4 edgesOutsideXYZ_triangleOutsideW = false; for (int i = 0; i < numPlanes; i++) { bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon, DistanceFromPlane(p1, frustumPlanes[i]) < epsilon, DistanceFromPlane(p2, frustumPlanes[i]) < epsilon); bool3 edgesOutside; // If both points of the edge are behind any of the planes, we cull. edgesOutside.x = pointsOutside.y && pointsOutside.z; edgesOutside.y = pointsOutside.x && pointsOutside.z; edgesOutside.z = pointsOutside.x && pointsOutside.y; edgesOutsideXYZ_triangleOutsideW = bool4(edgesOutsideXYZ_triangleOutsideW.x || edgesOutside.x, edgesOutsideXYZ_triangleOutsideW.y || edgesOutside.y, edgesOutsideXYZ_triangleOutsideW.z || edgesOutside.z, all(pointsOutside)); } return edgesOutsideXYZ_triangleOutsideW; } // Returns 'true' if the edge of the triangle is outside of the frustum. // The edges are defined s.t. they are on the opposite side of the point with the given index. // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. //output packing: // x,y,z - one component per triangle edge, true if outside, false otherwise bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) { return CullFullTriangleAndEdgesFrustum(p0, p1, p2, epsilon, frustumPlanes, numPlanes).xyz; } bool CullTriangleBackFaceView(float3 p0, float3 p1, float3 p2, float epsilon, float3 V, float winding) { float3 edge1 = p1 - p0; float3 edge2 = p2 - p0; float3 N = cross(edge1, edge2); float NdotV = dot(N, V) * winding; // Optimize: // NdotV / (length(N) * length(V)) < Epsilon // NdotV < Epsilon * length(N) * length(V) // NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V)) // NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V)) return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V)); } // Returns 'true' if a triangle defined by 3 vertices is back-facing. // 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle. // 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1). bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding) { float3 V = viewPos - p0; return CullTriangleBackFaceView(p0, p1, p2, epsilon, V, winding); } #endif // UNITY_GEOMETRICTOOLS_INCLUDED