using System.Collections;
using System.Collections.Generic;
using UnityEngine;
namespace Pathfinding {
using Pathfinding.Util;
///
/// Implements the funnel algorithm as well as various related methods.
/// See: http://digestingduck.blogspot.se/2010/03/simple-stupid-funnel-algorithm.html
/// See: FunnelModifier for the component that you can attach to objects to use the funnel algorithm.
///
public class Funnel {
/// Funnel in which the path to the target will be
public struct FunnelPortals {
public List left;
public List right;
}
///
/// Part of a path.
/// This is either a sequence of adjacent triangles
/// or a link.
/// See: NodeLink2
///
public struct PathPart {
/// Index of the first node in this part
public int startIndex;
/// Index of the last node in this part
public int endIndex;
public Vector3 startPoint, endPoint;
public bool isLink;
}
public static List SplitIntoParts (Path path) {
var nodes = path.path;
var result = ListPool.Claim();
if (nodes == null || nodes.Count == 0) {
return result;
}
// Loop through the path and split it into
// parts joined by links
for (int i = 0; i < nodes.Count; i++) {
if (nodes[i] is TriangleMeshNode || nodes[i] is GridNodeBase) {
var part = new PathPart();
part.startIndex = i;
uint currentGraphIndex = nodes[i].GraphIndex;
// Loop up until we find a node in another graph
// Ignore NodeLink3 nodes
for (; i < nodes.Count; i++) {
if (nodes[i].GraphIndex != currentGraphIndex && !(nodes[i] is NodeLink3Node)) {
break;
}
}
i--;
part.endIndex = i;
// If this is the first part in the path, use the exact start point
// otherwise use the position of the node right before the start of this
// part which is likely the end of the link to this part
if (part.startIndex == 0) {
part.startPoint = path.vectorPath[0];
} else {
part.startPoint = (Vector3)nodes[part.startIndex-1].position;
}
if (part.endIndex == nodes.Count-1) {
part.endPoint = path.vectorPath[path.vectorPath.Count-1];
} else {
part.endPoint = (Vector3)nodes[part.endIndex+1].position;
}
result.Add(part);
} else if (NodeLink2.GetNodeLink(nodes[i]) != null) {
var part = new PathPart();
part.startIndex = i;
var currentGraphIndex = nodes[i].GraphIndex;
for (i++; i < nodes.Count; i++) {
if (nodes[i].GraphIndex != currentGraphIndex) {
break;
}
}
i--;
if (i - part.startIndex == 0) {
// Just ignore it, it might be the case that a NodeLink was the closest node
continue;
} else if (i - part.startIndex != 1) {
throw new System.Exception("NodeLink2 link length greater than two (2) nodes. " + (i - part.startIndex + 1));
}
part.endIndex = i;
part.isLink = true;
part.startPoint = (Vector3)nodes[part.startIndex].position;
part.endPoint = (Vector3)nodes[part.endIndex].position;
result.Add(part);
} else {
throw new System.Exception("Unsupported node type or null node");
}
}
return result;
}
public static FunnelPortals ConstructFunnelPortals (List nodes, PathPart part) {
if (nodes == null || nodes.Count == 0) {
return new FunnelPortals { left = ListPool.Claim(0), right = ListPool.Claim(0) };
}
if (part.endIndex < part.startIndex || part.startIndex < 0 || part.endIndex > nodes.Count) throw new System.ArgumentOutOfRangeException();
// Claim temporary lists and try to find lists with a high capacity
var left = ListPool.Claim(nodes.Count+1);
var right = ListPool.Claim(nodes.Count+1);
// Add start point
left.Add(part.startPoint);
right.Add(part.startPoint);
// Loop through all nodes in the path (except the last one)
for (int i = part.startIndex; i < part.endIndex; i++) {
// Get the portal between path[i] and path[i+1] and add it to the left and right lists
bool portalWasAdded = nodes[i].GetPortal(nodes[i+1], left, right, false);
if (!portalWasAdded) {
// Fallback, just use the positions of the nodes
left.Add((Vector3)nodes[i].position);
right.Add((Vector3)nodes[i].position);
left.Add((Vector3)nodes[i+1].position);
right.Add((Vector3)nodes[i+1].position);
}
}
// Add end point
left.Add(part.endPoint);
right.Add(part.endPoint);
return new FunnelPortals { left = left, right = right };
}
public static void ShrinkPortals (FunnelPortals portals, float shrink) {
if (shrink <= 0.00001f) return;
for (int i = 0; i < portals.left.Count; i++) {
var left = portals.left[i];
var right = portals.right[i];
var length = (left - right).magnitude;
if (length > 0) {
float s = Mathf.Min(shrink / length, 0.4f);
portals.left[i] = Vector3.Lerp(left, right, s);
portals.right[i] = Vector3.Lerp(left, right, 1 - s);
}
}
}
static bool UnwrapHelper (Vector3 portalStart, Vector3 portalEnd, Vector3 prevPoint, Vector3 nextPoint, ref Quaternion mRot, ref Vector3 mOffset) {
// Skip the point if it was on the rotation axis
if (VectorMath.IsColinear(portalStart, portalEnd, nextPoint)) {
return false;
}
var axis = portalEnd - portalStart;
var sqrMagn = axis.sqrMagnitude;
prevPoint -= Vector3.Dot(prevPoint - portalStart, axis)/sqrMagn * axis;
nextPoint -= Vector3.Dot(nextPoint - portalStart, axis)/sqrMagn * axis;
var rot = Quaternion.FromToRotation(nextPoint - portalStart, portalStart - prevPoint);
// The code below is equivalent to these matrix operations (but a lot faster)
// This represents a rotation around a line in 3D space
//mat = mat * Matrix4x4.TRS(portalStart, rot, Vector3.one) * Matrix4x4.TRS(-portalStart, Quaternion.identity, Vector3.one);
mOffset += mRot * (portalStart - rot * portalStart);
mRot *= rot;
return true;
}
///
/// Unwraps the funnel portals from 3D space to 2D space.
/// The result is stored in the left and right arrays which must be at least as large as the funnel.left and funnel.right lists.
///
/// The input is a funnel like in the image below. It may be rotated and twisted.
/// [Open online documentation to see images]
/// The output will be a funnel in 2D space like in the image below. All twists and bends will have been straightened out.
/// [Open online documentation to see images]
///
/// See:
///
public static void Unwrap (FunnelPortals funnel, Vector2[] left, Vector2[] right) {
int startingIndex = 1;
var normal = Vector3.Cross(funnel.right[1] - funnel.left[0], funnel.left[1] - funnel.left[0]);
// This handles the case when the starting point is colinear with the first portal.
// Note that left.Length is only guaranteed to be at least as large as funnel.left.Count, it may be larger.
while (normal.sqrMagnitude <= 0.00000001f && startingIndex + 1 < funnel.left.Count) {
startingIndex++;
normal = Vector3.Cross(funnel.right[startingIndex] - funnel.left[0], funnel.left[startingIndex] - funnel.left[0]);
}
left[0] = right[0] = Vector2.zero;
var portalLeft = funnel.left[1];
var portalRight = funnel.right[1];
var prevPoint = funnel.left[0];
// The code below is equivalent to this matrix (but a lot faster)
// This represents a rotation around a line in 3D space
// Matrix4x4 m = Matrix4x4.TRS(Vector3.zero, Quaternion.FromToRotation(normal, Vector3.forward), Vector3.one) * Matrix4x4.TRS(-funnel.right[0], Quaternion.identity, Vector3.one);
Quaternion mRot = Quaternion.FromToRotation(normal, Vector3.forward);
Vector3 mOffset = mRot * (-funnel.right[0]);
for (int i = 1; i < funnel.left.Count; i++) {
if (UnwrapHelper(portalLeft, portalRight, prevPoint, funnel.left[i], ref mRot, ref mOffset)) {
prevPoint = portalLeft;
portalLeft = funnel.left[i];
}
left[i] = mRot * funnel.left[i] + mOffset;
if (UnwrapHelper(portalLeft, portalRight, prevPoint, funnel.right[i], ref mRot, ref mOffset)) {
prevPoint = portalRight;
portalRight = funnel.right[i];
}
right[i] = mRot * funnel.right[i] + mOffset;
}
}
///
/// Try to fix degenerate or invalid funnels.
/// Returns: The number of vertices at the start of both arrays that should be ignored or -1 if the algorithm failed.
///
static int FixFunnel (Vector2[] left, Vector2[] right, int numPortals) {
if (numPortals > left.Length || numPortals > right.Length) throw new System.ArgumentException("Arrays do not have as many elements as specified");
if (numPortals < 3) {
return -1;
}
// Remove duplicate vertices
int startIndex = 0;
while (left[startIndex + 1] == left[startIndex + 2] && right[startIndex + 1] == right[startIndex + 2]) {
// Equivalent to RemoveAt(1) if they would have been lists
left[startIndex + 1] = left[startIndex + 0];
right[startIndex + 1] = right[startIndex + 0];
startIndex++;
if (numPortals - startIndex < 3) {
return -1;
}
}
return startIndex;
}
protected static Vector2 ToXZ (Vector3 p) {
return new Vector2(p.x, p.z);
}
protected static Vector3 FromXZ (Vector2 p) {
return new Vector3(p.x, 0, p.y);
}
/// True if b is to the right of or on the line from (0,0) to a
protected static bool RightOrColinear (Vector2 a, Vector2 b) {
return (a.x*b.y - b.x*a.y) <= 0;
}
/// True if b is to the left of or on the line from (0,0) to a
protected static bool LeftOrColinear (Vector2 a, Vector2 b) {
return (a.x*b.y - b.x*a.y) >= 0;
}
///
/// Calculate the shortest path through the funnel.
///
/// If the unwrap option is disabled the funnel will simply be projected onto the XZ plane.
/// If the unwrap option is enabled then the funnel may be oriented arbitrarily and may have twists and bends.
/// This makes it possible to support the funnel algorithm in XY space as well as in more complicated cases, such
/// as on curved worlds.
/// [Open online documentation to see images]
///
/// [Open online documentation to see images]
///
/// See: Unwrap
///
/// The portals of the funnel. The first and last vertices portals must be single points (so for example left[0] == right[0]).
/// Determines if twists and bends should be straightened out before running the funnel algorithm.
/// If true, then a vertex will be inserted every time the path crosses a portal
/// instead of only at the corners of the path. The result will have exactly one vertex per portal if this is enabled.
/// This may introduce vertices with the same position in the output (esp. in corners where many portals meet).
public static List Calculate (FunnelPortals funnel, bool unwrap, bool splitAtEveryPortal) {
if (funnel.left.Count != funnel.right.Count) throw new System.ArgumentException("funnel.left.Count != funnel.right.Count");
// Get arrays at least as large as the number of portals
var leftArr = ArrayPool.Claim(funnel.left.Count);
var rightArr = ArrayPool.Claim(funnel.left.Count);
if (unwrap) {
Unwrap(funnel, leftArr, rightArr);
} else {
// Copy to arrays
for (int i = 0; i < funnel.left.Count; i++) {
leftArr[i] = ToXZ(funnel.left[i]);
rightArr[i] = ToXZ(funnel.right[i]);
}
}
int startIndex = FixFunnel(leftArr, rightArr, funnel.left.Count);
var intermediateResult = ListPool.Claim();
if (startIndex == -1) {
// If funnel algorithm failed, fall back to a simple line
intermediateResult.Add(0);
intermediateResult.Add(funnel.left.Count - 1);
} else {
bool lastCorner;
Calculate(leftArr, rightArr, funnel.left.Count, startIndex, intermediateResult, int.MaxValue, out lastCorner);
}
// Get list for the final result
var result = ListPool.Claim(intermediateResult.Count);
Vector2 prev2D = leftArr[0];
var prevIdx = 0;
for (int i = 0; i < intermediateResult.Count; i++) {
var idx = intermediateResult[i];
if (splitAtEveryPortal) {
// Check intersections with every portal segment
var next2D = idx >= 0 ? leftArr[idx] : rightArr[-idx];
for (int j = prevIdx + 1; j < System.Math.Abs(idx); j++) {
var factor = VectorMath.LineIntersectionFactorXZ(FromXZ(leftArr[j]), FromXZ(rightArr[j]), FromXZ(prev2D), FromXZ(next2D));
result.Add(Vector3.Lerp(funnel.left[j], funnel.right[j], factor));
}
prevIdx = Mathf.Abs(idx);
prev2D = next2D;
}
if (idx >= 0) {
result.Add(funnel.left[idx]);
} else {
result.Add(funnel.right[-idx]);
}
}
// Release lists back to the pool
ListPool.Release(ref intermediateResult);
ArrayPool.Release(ref leftArr);
ArrayPool.Release(ref rightArr);
return result;
}
///
/// Funnel algorithm.
/// funnelPath will be filled with the result.
/// The result is the indices of the vertices that were picked, a non-negative value refers to the corresponding index in the
/// left array, a negative value refers to the corresponding index in the right array.
/// So e.g 5 corresponds to left[5] and -2 corresponds to right[2]
///
/// See: http://digestingduck.blogspot.se/2010/03/simple-stupid-funnel-algorithm.html
///
static void Calculate (Vector2[] left, Vector2[] right, int numPortals, int startIndex, List funnelPath, int maxCorners, out bool lastCorner) {
if (left.Length != right.Length) throw new System.ArgumentException();
lastCorner = false;
int apexIndex = startIndex + 0;
int rightIndex = startIndex + 1;
int leftIndex = startIndex + 1;
Vector2 portalApex = left[apexIndex];
Vector2 portalLeft = left[leftIndex];
Vector2 portalRight = right[rightIndex];
funnelPath.Add(apexIndex);
for (int i = startIndex + 2; i < numPortals; i++) {
if (funnelPath.Count >= maxCorners) {
return;
}
if (funnelPath.Count > 2000) {
Debug.LogWarning("Avoiding infinite loop. Remove this check if you have this long paths.");
break;
}
Vector2 pLeft = left[i];
Vector2 pRight = right[i];
if (LeftOrColinear(portalRight - portalApex, pRight - portalApex)) {
if (portalApex == portalRight || RightOrColinear(portalLeft - portalApex, pRight - portalApex)) {
portalRight = pRight;
rightIndex = i;
} else {
portalApex = portalRight = portalLeft;
i = apexIndex = rightIndex = leftIndex;
funnelPath.Add(apexIndex);
continue;
}
}
if (RightOrColinear(portalLeft - portalApex, pLeft - portalApex)) {
if (portalApex == portalLeft || LeftOrColinear(portalRight - portalApex, pLeft - portalApex)) {
portalLeft = pLeft;
leftIndex = i;
} else {
portalApex = portalLeft = portalRight;
i = apexIndex = leftIndex = rightIndex;
// Negative value because we are referring
// to the right side
funnelPath.Add(-apexIndex);
continue;
}
}
}
lastCorner = true;
funnelPath.Add(numPortals-1);
}
}
}