using System.Collections.Generic;
namespace Pathfinding {
using Pathfinding.Util;
///
/// Represents a collection of GraphNodes.
/// It allows for fast lookups of the closest node to a point.
///
/// See: https://en.wikipedia.org/wiki/K-d_tree
///
public class PointKDTree {
// TODO: Make constant
public const int LeafSize = 10;
public const int LeafArraySize = LeafSize*2 + 1;
Node[] tree = new Node[16];
int numNodes = 0;
readonly List largeList = new List();
readonly Stack arrayCache = new Stack();
static readonly IComparer[] comparers = new IComparer[] { new CompareX(), new CompareY(), new CompareZ() };
struct Node {
/// Nodes in this leaf node (null if not a leaf node)
public GraphNode[] data;
/// Split point along the if not a leaf node
public int split;
/// Number of non-null entries in
public ushort count;
/// Axis to split along if not a leaf node (x=0, y=1, z=2)
public byte splitAxis;
}
// Pretty ugly with one class for each axis, but it has been verified to make the tree around 5% faster
class CompareX : IComparer {
public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.x.CompareTo(rhs.position.x); }
}
class CompareY : IComparer {
public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.y.CompareTo(rhs.position.y); }
}
class CompareZ : IComparer {
public int Compare (GraphNode lhs, GraphNode rhs) { return lhs.position.z.CompareTo(rhs.position.z); }
}
public PointKDTree() {
tree[1] = new Node { data = GetOrCreateList() };
}
/// Add the node to the tree
public void Add (GraphNode node) {
numNodes++;
Add(node, 1);
}
/// Rebuild the tree starting with all nodes in the array between index start (inclusive) and end (exclusive)
public void Rebuild (GraphNode[] nodes, int start, int end) {
if (start < 0 || end < start || end > nodes.Length)
throw new System.ArgumentException();
for (int i = 0; i < tree.Length; i++) {
var data = tree[i].data;
if (data != null) {
for (int j = 0; j < LeafArraySize; j++) data[j] = null;
arrayCache.Push(data);
tree[i].data = null;
}
}
numNodes = end - start;
Build(1, new List(nodes), start, end);
}
GraphNode[] GetOrCreateList () {
// Note, the lists will never become larger than this initial capacity, so possibly they should be replaced by arrays
return arrayCache.Count > 0 ? arrayCache.Pop() : new GraphNode[LeafArraySize];
}
int Size (int index) {
return tree[index].data != null ? tree[index].count : Size(2 * index) + Size(2 * index + 1);
}
void CollectAndClear (int index, List buffer) {
var nodes = tree[index].data;
var count = tree[index].count;
if (nodes != null) {
tree[index] = new Node();
for (int i = 0; i < count; i++) {
buffer.Add(nodes[i]);
nodes[i] = null;
}
arrayCache.Push(nodes);
} else {
CollectAndClear(index*2, buffer);
CollectAndClear(index*2 + 1, buffer);
}
}
static int MaxAllowedSize (int numNodes, int depth) {
// Allow a node to be 2.5 times as full as it should ideally be
// but do not allow it to contain more than 3/4ths of the total number of nodes
// (important to make sure nodes near the top of the tree also get rebalanced).
// A node should ideally contain numNodes/(2^depth) nodes below it (^ is exponentiation, not xor)
return System.Math.Min(((5 * numNodes) / 2) >> depth, (3 * numNodes) / 4);
}
void Rebalance (int index) {
CollectAndClear(index, largeList);
Build(index, largeList, 0, largeList.Count);
largeList.ClearFast();
}
void EnsureSize (int index) {
if (index >= tree.Length) {
var newLeaves = new Node[System.Math.Max(index + 1, tree.Length*2)];
tree.CopyTo(newLeaves, 0);
tree = newLeaves;
}
}
void Build (int index, List nodes, int start, int end) {
EnsureSize(index);
if (end - start <= LeafSize) {
var leafData = tree[index].data = GetOrCreateList();
tree[index].count = (ushort)(end - start);
for (int i = start; i < end; i++)
leafData[i - start] = nodes[i];
} else {
Int3 mn, mx;
mn = mx = nodes[start].position;
for (int i = start; i < end; i++) {
var p = nodes[i].position;
mn = new Int3(System.Math.Min(mn.x, p.x), System.Math.Min(mn.y, p.y), System.Math.Min(mn.z, p.z));
mx = new Int3(System.Math.Max(mx.x, p.x), System.Math.Max(mx.y, p.y), System.Math.Max(mx.z, p.z));
}
Int3 diff = mx - mn;
var axis = diff.x > diff.y ? (diff.x > diff.z ? 0 : 2) : (diff.y > diff.z ? 1 : 2);
nodes.Sort(start, end - start, comparers[axis]);
int mid = (start+end)/2;
tree[index].split = (nodes[mid-1].position[axis] + nodes[mid].position[axis] + 1)/2;
tree[index].splitAxis = (byte)axis;
Build(index*2 + 0, nodes, start, mid);
Build(index*2 + 1, nodes, mid, end);
}
}
void Add (GraphNode point, int index, int depth = 0) {
// Move down in the tree until the leaf node is found that this point is inside of
while (tree[index].data == null) {
index = 2 * index + (point.position[tree[index].splitAxis] < tree[index].split ? 0 : 1);
depth++;
}
// Add the point to the leaf node
tree[index].data[tree[index].count++] = point;
// Check if the leaf node is large enough that we need to do some rebalancing
if (tree[index].count >= LeafArraySize) {
int levelsUp = 0;
// Search upwards for nodes that are too large and should be rebalanced
// Rebalance the node above the node that had a too large size so that it can
// move children over to the sibling
while (depth - levelsUp > 0 && Size(index >> levelsUp) > MaxAllowedSize(numNodes, depth-levelsUp)) {
levelsUp++;
}
Rebalance(index >> levelsUp);
}
}
/// Closest node to the point which satisfies the constraint
public GraphNode GetNearest (Int3 point, NNConstraint constraint) {
GraphNode best = null;
long bestSqrDist = long.MaxValue;
GetNearestInternal(1, point, constraint, ref best, ref bestSqrDist);
return best;
}
void GetNearestInternal (int index, Int3 point, NNConstraint constraint, ref GraphNode best, ref long bestSqrDist) {
var data = tree[index].data;
if (data != null) {
for (int i = tree[index].count - 1; i >= 0; i--) {
var dist = (data[i].position - point).sqrMagnitudeLong;
if (dist < bestSqrDist && (constraint == null || constraint.Suitable(data[i]))) {
bestSqrDist = dist;
best = data[i];
}
}
} else {
var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
var childIndex = 2 * index + (dist < 0 ? 0 : 1);
GetNearestInternal(childIndex, point, constraint, ref best, ref bestSqrDist);
// Try the other one if it is possible to find a valid node on the other side
if (dist*dist < bestSqrDist) {
// childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
GetNearestInternal(childIndex ^ 0x1, point, constraint, ref best, ref bestSqrDist);
}
}
}
/// Closest node to the point which satisfies the constraint
public GraphNode GetNearestConnection (Int3 point, NNConstraint constraint, long maximumSqrConnectionLength) {
GraphNode best = null;
long bestSqrDist = long.MaxValue;
// Given a found point at a distance of r world units
// then any node that has a connection on which a closer point lies must have a squared distance lower than
// d^2 < (maximumConnectionLength/2)^2 + r^2
// Note: (x/2)^2 = (x^2)/4
// Note: (x+3)/4 to round up
long offset = (maximumSqrConnectionLength+3)/4;
GetNearestConnectionInternal(1, point, constraint, ref best, ref bestSqrDist, offset);
return best;
}
void GetNearestConnectionInternal (int index, Int3 point, NNConstraint constraint, ref GraphNode best, ref long bestSqrDist, long distanceThresholdOffset) {
var data = tree[index].data;
if (data != null) {
var pointv3 = (UnityEngine.Vector3)point;
for (int i = tree[index].count - 1; i >= 0; i--) {
var dist = (data[i].position - point).sqrMagnitudeLong;
// Note: the subtraction is important. If we used an addition on the RHS instead the result might overflow as bestSqrDist starts as long.MaxValue
if (dist - distanceThresholdOffset < bestSqrDist && (constraint == null || constraint.Suitable(data[i]))) {
// This node may contains the closest connection
// Check all connections
var conns = (data[i] as PointNode).connections;
if (conns != null) {
var nodePos = (UnityEngine.Vector3)data[i].position;
for (int j = 0; j < conns.Length; j++) {
// Find the closest point on the connection, but only on this node's side of the connection
// This ensures that we will find the closest node with the closest connection.
var connectionMidpoint = ((UnityEngine.Vector3)conns[j].node.position + nodePos) * 0.5f;
float sqrConnectionDistance = VectorMath.SqrDistancePointSegment(nodePos, connectionMidpoint, pointv3);
// Convert to Int3 space
long sqrConnectionDistanceInt = (long)(sqrConnectionDistance*Int3.FloatPrecision*Int3.FloatPrecision);
if (sqrConnectionDistanceInt < bestSqrDist) {
bestSqrDist = sqrConnectionDistanceInt;
best = data[i];
}
}
}
// Also check if the node itself is close enough.
// This is important if the node has no connections at all.
if (dist < bestSqrDist) {
bestSqrDist = dist;
best = data[i];
}
}
}
} else {
var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
var childIndex = 2 * index + (dist < 0 ? 0 : 1);
GetNearestConnectionInternal(childIndex, point, constraint, ref best, ref bestSqrDist, distanceThresholdOffset);
// Try the other one if it is possible to find a valid node on the other side
// Note: the subtraction is important. If we used an addition on the RHS instead the result might overflow as bestSqrDist starts as long.MaxValue
if (dist*dist - distanceThresholdOffset < bestSqrDist) {
// childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
GetNearestConnectionInternal(childIndex ^ 0x1, point, constraint, ref best, ref bestSqrDist, distanceThresholdOffset);
}
}
}
/// Add all nodes within a squared distance of the point to the buffer.
/// Nodes around this point will be added to the buffer.
/// squared maximum distance in Int3 space. If you are converting from world space you will need to multiply by Int3.Precision:
/// var sqrRadius = (worldSpaceRadius * Int3.Precision) * (worldSpaceRadius * Int3.Precision);
/// All nodes will be added to this list.
public void GetInRange (Int3 point, long sqrRadius, List buffer) {
GetInRangeInternal(1, point, sqrRadius, buffer);
}
void GetInRangeInternal (int index, Int3 point, long sqrRadius, List buffer) {
var data = tree[index].data;
if (data != null) {
for (int i = tree[index].count - 1; i >= 0; i--) {
var dist = (data[i].position - point).sqrMagnitudeLong;
if (dist < sqrRadius) {
buffer.Add(data[i]);
}
}
} else {
var dist = (long)(point[tree[index].splitAxis] - tree[index].split);
// Pick the first child to enter based on which side of the splitting line the point is
var childIndex = 2 * index + (dist < 0 ? 0 : 1);
GetInRangeInternal(childIndex, point, sqrRadius, buffer);
// Try the other one if it is possible to find a valid node on the other side
if (dist*dist < sqrRadius) {
// childIndex ^ 1 will flip the last bit, so if childIndex is odd, then childIndex ^ 1 will be even
GetInRangeInternal(childIndex ^ 0x1, point, sqrRadius, buffer);
}
}
}
}
}