using UnityEngine;
using Pathfinding.Serialization;
namespace Pathfinding {
/// Interface for something that holds a triangle based navmesh
public interface INavmeshHolder : ITransformedGraph, INavmesh {
/// Position of vertex number i in the world
Int3 GetVertex(int i);
///
/// Position of vertex number i in coordinates local to the graph.
/// The up direction is always the +Y axis for these coordinates.
///
Int3 GetVertexInGraphSpace(int i);
int GetVertexArrayIndex(int index);
/// Transforms coordinates from graph space to world space
void GetTileCoordinates(int tileIndex, out int x, out int z);
}
/// Node represented by a triangle
public class TriangleMeshNode : MeshNode {
public TriangleMeshNode (AstarPath astar) : base(astar) {}
/// Internal vertex index for the first vertex
public int v0;
/// Internal vertex index for the second vertex
public int v1;
/// Internal vertex index for the third vertex
public int v2;
/// Holds INavmeshHolder references for all graph indices to be able to access them in a performant manner
protected static INavmeshHolder[] _navmeshHolders = new INavmeshHolder[0];
/// Used for synchronised access to the array
protected static readonly System.Object lockObject = new System.Object();
public static INavmeshHolder GetNavmeshHolder (uint graphIndex) {
return _navmeshHolders[(int)graphIndex];
}
///
/// Sets the internal navmesh holder for a given graph index.
/// Warning: Internal method
///
public static void SetNavmeshHolder (int graphIndex, INavmeshHolder graph) {
// We need to lock to make sure that
// the resize operation is thread safe
lock (lockObject) {
if (graphIndex >= _navmeshHolders.Length) {
var gg = new INavmeshHolder[graphIndex+1];
_navmeshHolders.CopyTo(gg, 0);
_navmeshHolders = gg;
}
_navmeshHolders[graphIndex] = graph;
}
}
/// Set the position of this node to the average of its 3 vertices
public void UpdatePositionFromVertices () {
Int3 a, b, c;
GetVertices(out a, out b, out c);
position = (a + b + c) * 0.333333f;
}
///
/// Return a number identifying a vertex.
/// This number does not necessarily need to be a index in an array but two different vertices (in the same graph) should
/// not have the same vertex numbers.
///
public int GetVertexIndex (int i) {
return i == 0 ? v0 : (i == 1 ? v1 : v2);
}
///
/// Return a number specifying an index in the source vertex array.
/// The vertex array can for example be contained in a recast tile, or be a navmesh graph, that is graph dependant.
/// This is slower than GetVertexIndex, if you only need to compare vertices, use GetVertexIndex.
///
public int GetVertexArrayIndex (int i) {
return GetNavmeshHolder(GraphIndex).GetVertexArrayIndex(i == 0 ? v0 : (i == 1 ? v1 : v2));
}
/// Returns all 3 vertices of this node in world space
public void GetVertices (out Int3 v0, out Int3 v1, out Int3 v2) {
// Get the object holding the vertex data for this node
// This is usually a graph or a recast graph tile
var holder = GetNavmeshHolder(GraphIndex);
v0 = holder.GetVertex(this.v0);
v1 = holder.GetVertex(this.v1);
v2 = holder.GetVertex(this.v2);
}
/// Returns all 3 vertices of this node in graph space
public void GetVerticesInGraphSpace (out Int3 v0, out Int3 v1, out Int3 v2) {
// Get the object holding the vertex data for this node
// This is usually a graph or a recast graph tile
var holder = GetNavmeshHolder(GraphIndex);
v0 = holder.GetVertexInGraphSpace(this.v0);
v1 = holder.GetVertexInGraphSpace(this.v1);
v2 = holder.GetVertexInGraphSpace(this.v2);
}
public override Int3 GetVertex (int i) {
return GetNavmeshHolder(GraphIndex).GetVertex(GetVertexIndex(i));
}
public Int3 GetVertexInGraphSpace (int i) {
return GetNavmeshHolder(GraphIndex).GetVertexInGraphSpace(GetVertexIndex(i));
}
public override int GetVertexCount () {
// A triangle has 3 vertices
return 3;
}
public override Vector3 ClosestPointOnNode (Vector3 p) {
Int3 a, b, c;
GetVertices(out a, out b, out c);
return Pathfinding.Polygon.ClosestPointOnTriangle((Vector3)a, (Vector3)b, (Vector3)c, p);
}
///
/// Closest point on the node when seen from above.
/// This method is mostly for internal use as the methods use it.
///
/// - The returned point is the closest one on the node to p when seen from above (relative to the graph).
/// This is important mostly for sloped surfaces.
/// - The returned point is an Int3 point in graph space.
/// - It is guaranteed to be inside the node, so if you call with the return value from this method the result is guaranteed to be true.
///
/// This method is slower than e.g or .
/// However they do not have the same guarantees as this method has.
///
internal Int3 ClosestPointOnNodeXZInGraphSpace (Vector3 p) {
// Get the vertices that make up the triangle
Int3 a, b, c;
GetVerticesInGraphSpace(out a, out b, out c);
// Convert p to graph space
p = GetNavmeshHolder(GraphIndex).transform.InverseTransform(p);
// Find the closest point on the triangle to p when looking at the triangle from above (relative to the graph)
var closest = Pathfinding.Polygon.ClosestPointOnTriangleXZ((Vector3)a, (Vector3)b, (Vector3)c, p);
// Make sure the point is actually inside the node
var i3closest = (Int3)closest;
if (ContainsPointInGraphSpace(i3closest)) {
// Common case
return i3closest;
} else {
// Annoying...
// The closest point when converted from floating point coordinates to integer coordinates
// is not actually inside the node. It needs to be inside the node for some methods
// (like for example Linecast) to work properly.
// Try the 8 integer coordinates around the closest point
// and check if any one of them are completely inside the node.
// This will most likely succeed as it should be very close.
for (int dx = -1; dx <= 1; dx++) {
for (int dz = -1; dz <= 1; dz++) {
if ((dx != 0 || dz != 0)) {
var candidate = new Int3(i3closest.x + dx, i3closest.y, i3closest.z + dz);
if (ContainsPointInGraphSpace(candidate)) return candidate;
}
}
}
// Happens veery rarely.
// Pick the closest vertex of the triangle.
// The vertex is guaranteed to be inside the triangle.
var da = (a - i3closest).sqrMagnitudeLong;
var db = (b - i3closest).sqrMagnitudeLong;
var dc = (c - i3closest).sqrMagnitudeLong;
return da < db ? (da < dc ? a : c) : (db < dc ? b : c);
}
}
public override Vector3 ClosestPointOnNodeXZ (Vector3 p) {
// Get all 3 vertices for this node
Int3 tp1, tp2, tp3;
GetVertices(out tp1, out tp2, out tp3);
return Polygon.ClosestPointOnTriangleXZ((Vector3)tp1, (Vector3)tp2, (Vector3)tp3, p);
}
public override bool ContainsPoint (Vector3 p) {
return ContainsPointInGraphSpace((Int3)GetNavmeshHolder(GraphIndex).transform.InverseTransform(p));
}
public override bool ContainsPointInGraphSpace (Int3 p) {
// Get all 3 vertices for this node
Int3 a, b, c;
GetVerticesInGraphSpace(out a, out b, out c);
if ((long)(b.x - a.x) * (long)(p.z - a.z) - (long)(p.x - a.x) * (long)(b.z - a.z) > 0) return false;
if ((long)(c.x - b.x) * (long)(p.z - b.z) - (long)(p.x - b.x) * (long)(c.z - b.z) > 0) return false;
if ((long)(a.x - c.x) * (long)(p.z - c.z) - (long)(p.x - c.x) * (long)(a.z - c.z) > 0) return false;
return true;
// Equivalent code, but the above code is faster
//return Polygon.IsClockwiseMargin (a,b, p) && Polygon.IsClockwiseMargin (b,c, p) && Polygon.IsClockwiseMargin (c,a, p);
//return Polygon.ContainsPoint(g.GetVertex(v0),g.GetVertex(v1),g.GetVertex(v2),p);
}
public override void UpdateRecursiveG (Path path, PathNode pathNode, PathHandler handler) {
pathNode.UpdateG(path);
handler.heap.Add(pathNode);
if (connections == null) return;
for (int i = 0; i < connections.Length; i++) {
GraphNode other = connections[i].node;
PathNode otherPN = handler.GetPathNode(other);
if (otherPN.parent == pathNode && otherPN.pathID == handler.PathID) other.UpdateRecursiveG(path, otherPN, handler);
}
}
public override void Open (Path path, PathNode pathNode, PathHandler handler) {
if (connections == null) return;
// Flag2 indicates if this node needs special treatment
// with regard to connection costs
bool flag2 = pathNode.flag2;
// Loop through all connections
for (int i = connections.Length-1; i >= 0; i--) {
var conn = connections[i];
var other = conn.node;
// Make sure we can traverse the neighbour
if (path.CanTraverse(conn.node)) {
PathNode pathOther = handler.GetPathNode(conn.node);
// Fast path out, worth it for triangle mesh nodes since they usually have degree 2 or 3
if (pathOther == pathNode.parent) {
continue;
}
uint cost = conn.cost;
if (flag2 || pathOther.flag2) {
// Get special connection cost from the path
// This is used by the start and end nodes
cost = path.GetConnectionSpecialCost(this, conn.node, cost);
}
// Test if we have seen the other node before
if (pathOther.pathID != handler.PathID) {
// We have not seen the other node before
// So the path from the start through this node to the other node
// must be the shortest one so far
// Might not be assigned
pathOther.node = conn.node;
pathOther.parent = pathNode;
pathOther.pathID = handler.PathID;
pathOther.cost = cost;
pathOther.H = path.CalculateHScore(other);
pathOther.UpdateG(path);
handler.heap.Add(pathOther);
} else {
// If not we can test if the path from this node to the other one is a better one than the one already used
if (pathNode.G + cost + path.GetTraversalCost(other) < pathOther.G) {
pathOther.cost = cost;
pathOther.parent = pathNode;
other.UpdateRecursiveG(path, pathOther, handler);
}
}
}
}
}
///
/// Returns the edge which is shared with other.
/// If no edge is shared, -1 is returned.
/// If there is a connection with the other node, but the connection is not marked as using a particular edge of the shape of the node
/// then 0xFF will be returned.
///
/// The vertices in the edge can be retrieved using
///
/// var edge = node.SharedEdge(other);
/// var a = node.GetVertex(edge);
/// var b = node.GetVertex((edge+1) % node.GetVertexCount());
///
///
/// See: which also handles edges that are shared over tile borders and some types of node links
///
public int SharedEdge (GraphNode other) {
var edge = -1;
if (connections != null) {
for (int i = 0; i < connections.Length; i++) {
if (connections[i].node == other) edge = connections[i].shapeEdge;
}
}
return edge;
}
public override bool GetPortal (GraphNode toNode, System.Collections.Generic.List left, System.Collections.Generic.List right, bool backwards) {
int aIndex, bIndex;
return GetPortal(toNode, left, right, backwards, out aIndex, out bIndex);
}
public bool GetPortal (GraphNode toNode, System.Collections.Generic.List left, System.Collections.Generic.List right, bool backwards, out int aIndex, out int bIndex) {
aIndex = -1;
bIndex = -1;
//If the nodes are in different graphs, this function has no idea on how to find a shared edge.
if (backwards || toNode.GraphIndex != GraphIndex) return false;
// Since the nodes are in the same graph, they are both TriangleMeshNodes
// So we don't need to care about other types of nodes
var toTriNode = toNode as TriangleMeshNode;
var edge = SharedEdge(toTriNode);
// A connection was found, but it specifically didn't use an edge
if (edge == 0xFF) return false;
// No connection was found between the nodes
// Check if there is a node link that connects them
if (edge == -1) {
#if !ASTAR_NO_POINT_GRAPH
if (connections != null) {
for (int i = 0; i < connections.Length; i++) {
if (connections[i].node.GraphIndex != GraphIndex) {
var mid = connections[i].node as NodeLink3Node;
if (mid != null && mid.GetOther(this) == toTriNode) {
// We have found a node which is connected through a NodeLink3Node
mid.GetPortal(toTriNode, left, right, false);
return true;
}
}
}
}
#endif
return false;
}
aIndex = edge;
bIndex = (edge + 1) % GetVertexCount();
// Get the vertices of the shared edge for the first node
Int3 v1a = GetVertex(edge);
Int3 v1b = GetVertex((edge+1) % GetVertexCount());
// Get tile indices
int tileIndex1 = (GetVertexIndex(0) >> NavmeshBase.TileIndexOffset) & NavmeshBase.TileIndexMask;
int tileIndex2 = (toTriNode.GetVertexIndex(0) >> NavmeshBase.TileIndexOffset) & NavmeshBase.TileIndexMask;
if (tileIndex1 != tileIndex2) {
// When the nodes are in different tiles, the edges might not be completely identical
// so another technique is needed.
// Get the tile coordinates, from them we can figure out which edge is going to be shared
int x1, x2, z1, z2, coord;
INavmeshHolder nm = GetNavmeshHolder(GraphIndex);
nm.GetTileCoordinates(tileIndex1, out x1, out z1);
nm.GetTileCoordinates(tileIndex2, out x2, out z2);
if (System.Math.Abs(x1-x2) == 1) coord = 2;
else if (System.Math.Abs(z1-z2) == 1) coord = 0;
else return false; // Tiles are not adjacent. This is likely a custom connection between two nodes.
var otherEdge = toTriNode.SharedEdge(this);
// A connection was found, but it specifically didn't use an edge. This is odd since the connection in the other direction did use an edge
if (otherEdge == 0xFF) throw new System.Exception("Connection used edge in one direction, but not in the other direction. Has the wrong overload of AddConnection been used?");
// If it is -1 then it must be a one-way connection. Fall back to using the whole edge
if (otherEdge != -1) {
// When the nodes are in different tiles, they might not share exactly the same edge
// so we clamp the portal to the segment of the edges which they both have.
int mincoord = System.Math.Min(v1a[coord], v1b[coord]);
int maxcoord = System.Math.Max(v1a[coord], v1b[coord]);
// Get the vertices of the shared edge for the second node
Int3 v2a = toTriNode.GetVertex(otherEdge);
Int3 v2b = toTriNode.GetVertex((otherEdge+1) % toTriNode.GetVertexCount());
mincoord = System.Math.Max(mincoord, System.Math.Min(v2a[coord], v2b[coord]));
maxcoord = System.Math.Min(maxcoord, System.Math.Max(v2a[coord], v2b[coord]));
if (v1a[coord] < v1b[coord]) {
v1a[coord] = mincoord;
v1b[coord] = maxcoord;
} else {
v1a[coord] = maxcoord;
v1b[coord] = mincoord;
}
}
}
if (left != null) {
// All triangles should be laid out in clockwise order so v1b is the rightmost vertex (seen from this node)
left.Add((Vector3)v1a);
right.Add((Vector3)v1b);
}
return true;
}
/// TODO: This is the area in XZ space, use full 3D space for higher correctness maybe?
public override float SurfaceArea () {
var holder = GetNavmeshHolder(GraphIndex);
return System.Math.Abs(VectorMath.SignedTriangleAreaTimes2XZ(holder.GetVertex(v0), holder.GetVertex(v1), holder.GetVertex(v2))) * 0.5f;
}
public override Vector3 RandomPointOnSurface () {
// Find a random point inside the triangle
// This generates uniformly distributed trilinear coordinates
// See http://mathworld.wolfram.com/TrianglePointPicking.html
float r1;
float r2;
do {
r1 = Random.value;
r2 = Random.value;
} while (r1+r2 > 1);
var holder = GetNavmeshHolder(GraphIndex);
// Pick the point corresponding to the trilinear coordinate
return ((Vector3)(holder.GetVertex(v1)-holder.GetVertex(v0)))*r1 + ((Vector3)(holder.GetVertex(v2)-holder.GetVertex(v0)))*r2 + (Vector3)holder.GetVertex(v0);
}
public override void SerializeNode (GraphSerializationContext ctx) {
base.SerializeNode(ctx);
ctx.writer.Write(v0);
ctx.writer.Write(v1);
ctx.writer.Write(v2);
}
public override void DeserializeNode (GraphSerializationContext ctx) {
base.DeserializeNode(ctx);
v0 = ctx.reader.ReadInt32();
v1 = ctx.reader.ReadInt32();
v2 = ctx.reader.ReadInt32();
}
}
}