using UnityEngine;
using System.Collections.Generic;
#if UNITY_5_5_OR_NEWER
using UnityEngine.Profiling;
#endif
namespace Pathfinding {
using System.IO;
using Pathfinding.Util;
using Pathfinding.Serialization;
using Math = System.Math;
using System.Linq;
/// Base class for RecastGraph and NavMeshGraph
public abstract class NavmeshBase : NavGraph, INavmesh, INavmeshHolder, ITransformedGraph {
#if ASTAR_RECAST_LARGER_TILES
// Larger tiles
public const int VertexIndexMask = 0xFFFFF;
public const int TileIndexMask = 0x7FF;
public const int TileIndexOffset = 20;
#else
// Larger worlds
public const int VertexIndexMask = 0xFFF;
public const int TileIndexMask = 0x7FFFF;
public const int TileIndexOffset = 12;
#endif
/// Size of the bounding box.
[JsonMember]
public Vector3 forcedBoundsSize = new Vector3(100, 40, 100);
/// Size of a tile in world units along the X axis
public abstract float TileWorldSizeX { get; }
/// Size of a tile in world units along the Z axis
public abstract float TileWorldSizeZ { get; }
///
/// Maximum (vertical) distance between the sides of two nodes for them to be connected across a tile edge.
/// When tiles are connected to each other, the nodes sometimes do not line up perfectly
/// so some allowance must be made to allow tiles that do not match exactly to be connected with each other.
///
protected abstract float MaxTileConnectionEdgeDistance { get; }
/// Show an outline of the polygons in the Unity Editor
[JsonMember]
public bool showMeshOutline = true;
/// Show the connections between the polygons in the Unity Editor
[JsonMember]
public bool showNodeConnections;
/// Show the surface of the navmesh
[JsonMember]
public bool showMeshSurface = true;
/// Number of tiles along the X-axis
public int tileXCount;
/// Number of tiles along the Z-axis
public int tileZCount;
///
/// All tiles.
///
/// See:
///
protected NavmeshTile[] tiles;
///
/// Perform nearest node searches in XZ space only.
/// Recomended for single-layered environments. Faster but can be inaccurate esp. in multilayered contexts.
/// You should not use this if the graph is rotated since then the XZ plane no longer corresponds to the ground plane.
///
/// This can be important on sloped surfaces. See the image below in which the closest point for each blue point is queried for:
/// [Open online documentation to see images]
///
/// You can also control this using a .
///
[JsonMember]
public bool nearestSearchOnlyXZ;
///
/// Should navmesh cuts affect this graph.
/// See:
///
[JsonMember]
public bool enableNavmeshCutting = true;
///
/// Handles navmesh cutting.
/// See:
/// See:
///
internal readonly NavmeshUpdates.NavmeshUpdateSettings navmeshUpdateData;
/// Currently updating tiles in a batch
bool batchTileUpdate;
/// List of tiles updating during batch
List batchUpdatedTiles = new List();
/// List of nodes that are going to be destroyed as part of a batch update
List batchNodesToDestroy = new List();
///
/// Determines how the graph transforms graph space to world space.
/// See:
///
public GraphTransform transform = new GraphTransform(Matrix4x4.identity);
GraphTransform ITransformedGraph.transform { get { return transform; } }
/// \copydoc Pathfinding::NavMeshGraph::recalculateNormals
protected abstract bool RecalculateNormals { get; }
///
/// Returns a new transform which transforms graph space to world space.
/// Does not update the field.
/// See:
///
public abstract GraphTransform CalculateTransform();
///
/// Called when tiles have been completely recalculated.
/// This is called after scanning the graph and after
/// performing graph updates that completely recalculate tiles
/// (not ones that simply modify e.g penalties).
/// It is not called after NavmeshCut updates.
///
public System.Action OnRecalculatedTiles;
///
/// Tile at the specified x, z coordinate pair.
/// The first tile is at (0,0), the last tile at (tileXCount-1, tileZCount-1).
///
///
/// var graph = AstarPath.active.data.recastGraph;
/// int tileX = 5;
/// int tileZ = 8;
/// NavmeshTile tile = graph.GetTile(tileX, tileZ);
///
/// for (int i = 0; i < tile.nodes.Length; i++) {
/// // ...
/// }
/// // or you can access the nodes like this:
/// tile.GetNodes(node => {
/// // ...
/// });
///
///
public NavmeshTile GetTile (int x, int z) {
return tiles[x + z * tileXCount];
}
///
/// Vertex coordinate for the specified vertex index.
///
/// \throws IndexOutOfRangeException if the vertex index is invalid.
/// \throws NullReferenceException if the tile the vertex is in is not calculated.
///
/// See: NavmeshTile.GetVertex
///
public Int3 GetVertex (int index) {
int tileIndex = (index >> TileIndexOffset) & TileIndexMask;
return tiles[tileIndex].GetVertex(index);
}
/// Vertex coordinate in graph space for the specified vertex index
public Int3 GetVertexInGraphSpace (int index) {
int tileIndex = (index >> TileIndexOffset) & TileIndexMask;
return tiles[tileIndex].GetVertexInGraphSpace(index);
}
/// Tile index from a vertex index
public static int GetTileIndex (int index) {
return (index >> TileIndexOffset) & TileIndexMask;
}
public int GetVertexArrayIndex (int index) {
return index & VertexIndexMask;
}
/// Tile coordinates from a tile index
public void GetTileCoordinates (int tileIndex, out int x, out int z) {
//z = System.Math.DivRem (tileIndex, tileXCount, out x);
z = tileIndex/tileXCount;
x = tileIndex - z*tileXCount;
}
///
/// All tiles.
/// Warning: Do not modify this array
///
public NavmeshTile[] GetTiles () {
return tiles;
}
///
/// Returns a bounds object with the bounding box of a group of tiles.
/// The bounding box is defined in world space.
///
public Bounds GetTileBounds (IntRect rect) {
return GetTileBounds(rect.xmin, rect.ymin, rect.Width, rect.Height);
}
///
/// Returns a bounds object with the bounding box of a group of tiles.
/// The bounding box is defined in world space.
///
public Bounds GetTileBounds (int x, int z, int width = 1, int depth = 1) {
return transform.Transform(GetTileBoundsInGraphSpace(x, z, width, depth));
}
public Bounds GetTileBoundsInGraphSpace (IntRect rect) {
return GetTileBoundsInGraphSpace(rect.xmin, rect.ymin, rect.Width, rect.Height);
}
/// Returns an XZ bounds object with the bounds of a group of tiles in graph space
public Bounds GetTileBoundsInGraphSpace (int x, int z, int width = 1, int depth = 1) {
var b = new Bounds();
b.SetMinMax(
new Vector3(x*TileWorldSizeX, 0, z*TileWorldSizeZ),
new Vector3((x+width)*TileWorldSizeX, forcedBoundsSize.y, (z+depth)*TileWorldSizeZ)
);
return b;
}
///
/// Returns the tile coordinate which contains the specified position.
/// It is not necessarily a valid tile (i.e it could be out of bounds).
///
public Int2 GetTileCoordinates (Vector3 position) {
position = transform.InverseTransform(position);
position.x /= TileWorldSizeX;
position.z /= TileWorldSizeZ;
return new Int2((int)position.x, (int)position.z);
}
protected override void OnDestroy () {
base.OnDestroy();
// Cleanup
TriangleMeshNode.SetNavmeshHolder(active.data.GetGraphIndex(this), null);
if (tiles != null) {
for (int i = 0; i < tiles.Length; i++) {
Pathfinding.Util.ObjectPool.Release(ref tiles[i].bbTree);
}
}
}
public override void RelocateNodes (Matrix4x4 deltaMatrix) {
RelocateNodes(deltaMatrix * transform);
}
///
/// Moves the nodes in this graph.
/// Moves all the nodes in such a way that the specified transform is the new graph space to world space transformation for the graph.
/// You usually use this together with the method.
///
/// So for example if you want to move and rotate all your nodes in e.g a recast graph you can do
///
/// var graph = AstarPath.data.recastGraph;
/// graph.rotation = new Vector3(45, 0, 0);
/// graph.forcedBoundsCenter = new Vector3(20, 10, 10);
/// var transform = graph.CalculateTransform();
/// graph.RelocateNodes(transform);
///
/// This will move all the nodes to new positions as if the new graph settings had been there from the start.
///
/// Note: RelocateNodes(deltaMatrix) is not equivalent to RelocateNodes(new GraphTransform(deltaMatrix)).
/// The overload which takes a matrix multiplies all existing node positions with the matrix while this
/// overload does not take into account the current positions of the nodes.
///
/// See:
///
public void RelocateNodes (GraphTransform newTransform) {
transform = newTransform;
if (tiles != null) {
// Move all the vertices in each tile
for (int tileIndex = 0; tileIndex < tiles.Length; tileIndex++) {
var tile = tiles[tileIndex];
if (tile != null) {
tile.vertsInGraphSpace.CopyTo(tile.verts, 0);
// Transform the graph space vertices to world space
transform.Transform(tile.verts);
for (int nodeIndex = 0; nodeIndex < tile.nodes.Length; nodeIndex++) {
tile.nodes[nodeIndex].UpdatePositionFromVertices();
}
tile.bbTree.RebuildFrom(tile.nodes);
}
}
}
}
/// Creates a single new empty tile
protected NavmeshTile NewEmptyTile (int x, int z) {
return new NavmeshTile {
x = x,
z = z,
w = 1,
d = 1,
verts = new Int3[0],
vertsInGraphSpace = new Int3[0],
tris = new int[0],
nodes = new TriangleMeshNode[0],
bbTree = ObjectPool.Claim(),
graph = this,
};
}
public override void GetNodes (System.Action action) {
if (tiles == null) return;
for (int i = 0; i < tiles.Length; i++) {
if (tiles[i] == null || tiles[i].x+tiles[i].z*tileXCount != i) continue;
TriangleMeshNode[] nodes = tiles[i].nodes;
if (nodes == null) continue;
for (int j = 0; j < nodes.Length; j++) action(nodes[j]);
}
}
///
/// Returns a rect containing the indices of all tiles touching the specified bounds.
/// If a margin is passed, the bounding box in graph space is expanded by that amount in every direction.
///
public IntRect GetTouchingTiles (Bounds bounds, float margin = 0) {
bounds = transform.InverseTransform(bounds);
// Calculate world bounds of all affected tiles
var r = new IntRect(Mathf.FloorToInt((bounds.min.x - margin) / TileWorldSizeX), Mathf.FloorToInt((bounds.min.z - margin) / TileWorldSizeZ), Mathf.FloorToInt((bounds.max.x + margin) / TileWorldSizeX), Mathf.FloorToInt((bounds.max.z + margin) / TileWorldSizeZ));
// Clamp to bounds
r = IntRect.Intersection(r, new IntRect(0, 0, tileXCount-1, tileZCount-1));
return r;
}
/// Returns a rect containing the indices of all tiles touching the specified bounds.
/// Graph space rectangle (in graph space all tiles are on the XZ plane regardless of graph rotation and other transformations, the first tile has a corner at the origin)
public IntRect GetTouchingTilesInGraphSpace (Rect rect) {
// Calculate world bounds of all affected tiles
var r = new IntRect(Mathf.FloorToInt(rect.xMin / TileWorldSizeX), Mathf.FloorToInt(rect.yMin / TileWorldSizeZ), Mathf.FloorToInt(rect.xMax / TileWorldSizeX), Mathf.FloorToInt(rect.yMax / TileWorldSizeZ));
// Clamp to bounds
r = IntRect.Intersection(r, new IntRect(0, 0, tileXCount-1, tileZCount-1));
return r;
}
///
/// Returns a rect containing the indices of all tiles by rounding the specified bounds to tile borders.
/// This is different from GetTouchingTiles in that the tiles inside the rectangle returned from this method
/// may not contain the whole bounds, while that is guaranteed for GetTouchingTiles.
///
public IntRect GetTouchingTilesRound (Bounds bounds) {
bounds = transform.InverseTransform(bounds);
//Calculate world bounds of all affected tiles
var r = new IntRect(Mathf.RoundToInt(bounds.min.x / TileWorldSizeX), Mathf.RoundToInt(bounds.min.z / TileWorldSizeZ), Mathf.RoundToInt(bounds.max.x / TileWorldSizeX)-1, Mathf.RoundToInt(bounds.max.z / TileWorldSizeZ)-1);
//Clamp to bounds
r = IntRect.Intersection(r, new IntRect(0, 0, tileXCount-1, tileZCount-1));
return r;
}
protected void ConnectTileWithNeighbours (NavmeshTile tile, bool onlyUnflagged = false) {
if (tile.w != 1 || tile.d != 1) {
throw new System.ArgumentException("Tile widths or depths other than 1 are not supported. The fields exist mainly for possible future expansions.");
}
// Loop through z and x offsets to adjacent tiles
// _ x _
// x _ x
// _ x _
for (int zo = -1; zo <= 1; zo++) {
var z = tile.z + zo;
if (z < 0 || z >= tileZCount) continue;
for (int xo = -1; xo <= 1; xo++) {
var x = tile.x + xo;
if (x < 0 || x >= tileXCount) continue;
// Ignore diagonals and the tile itself
if ((xo == 0) == (zo == 0)) continue;
var otherTile = tiles[x + z*tileXCount];
if (!onlyUnflagged || !otherTile.flag) {
ConnectTiles(otherTile, tile);
}
}
}
}
protected void RemoveConnectionsFromTile (NavmeshTile tile) {
if (tile.x > 0) {
int x = tile.x-1;
for (int z = tile.z; z < tile.z+tile.d; z++) RemoveConnectionsFromTo(tiles[x + z*tileXCount], tile);
}
if (tile.x+tile.w < tileXCount) {
int x = tile.x+tile.w;
for (int z = tile.z; z < tile.z+tile.d; z++) RemoveConnectionsFromTo(tiles[x + z*tileXCount], tile);
}
if (tile.z > 0) {
int z = tile.z-1;
for (int x = tile.x; x < tile.x+tile.w; x++) RemoveConnectionsFromTo(tiles[x + z*tileXCount], tile);
}
if (tile.z+tile.d < tileZCount) {
int z = tile.z+tile.d;
for (int x = tile.x; x < tile.x+tile.w; x++) RemoveConnectionsFromTo(tiles[x + z*tileXCount], tile);
}
}
protected void RemoveConnectionsFromTo (NavmeshTile a, NavmeshTile b) {
if (a == null || b == null) return;
//Same tile, possibly from a large tile (one spanning several x,z tile coordinates)
if (a == b) return;
int tileIdx = b.x + b.z*tileXCount;
for (int i = 0; i < a.nodes.Length; i++) {
TriangleMeshNode node = a.nodes[i];
if (node.connections == null) continue;
for (int j = 0;; j++) {
//Length will not be constant if connections are removed
if (j >= node.connections.Length) break;
var other = node.connections[j].node as TriangleMeshNode;
//Only evaluate TriangleMeshNodes
if (other == null) continue;
int tileIdx2 = other.GetVertexIndex(0);
tileIdx2 = (tileIdx2 >> TileIndexOffset) & TileIndexMask;
if (tileIdx2 == tileIdx) {
node.RemoveConnection(node.connections[j].node);
j--;
}
}
}
}
static readonly NNConstraint NNConstraintDistanceXZ = new NNConstraint { distanceXZ = true };
public override NNInfoInternal GetNearest (Vector3 position, NNConstraint constraint, GraphNode hint) {
return GetNearestForce(position, constraint != null && constraint.distanceXZ ? NNConstraintDistanceXZ : null);
}
public override NNInfoInternal GetNearestForce (Vector3 position, NNConstraint constraint) {
if (tiles == null) return new NNInfoInternal();
var tileCoords = GetTileCoordinates(position);
// Clamp to graph borders
tileCoords.x = Mathf.Clamp(tileCoords.x, 0, tileXCount-1);
tileCoords.y = Mathf.Clamp(tileCoords.y, 0, tileZCount-1);
int wmax = Math.Max(tileXCount, tileZCount);
var best = new NNInfoInternal();
float bestDistance = float.PositiveInfinity;
bool xzSearch = nearestSearchOnlyXZ || (constraint != null && constraint.distanceXZ);
// Search outwards in a diamond pattern from the closest tile
// 2
// 2 1 2
// 2 1 0 1 2 etc.
// 2 1 2
// 2
for (int w = 0; w < wmax; w++) {
// Stop the loop when we can guarantee that no nodes will be closer than the ones we have already searched
if (bestDistance < (w-2)*Math.Max(TileWorldSizeX, TileWorldSizeX)) break;
int zmax = Math.Min(w+tileCoords.y +1, tileZCount);
for (int z = Math.Max(-w+tileCoords.y, 0); z < zmax; z++) {
// Solve for z such that abs(x-tx) + abs(z-tx) == w
// Delta X coordinate
int originalDx = Math.Abs(w - Math.Abs(z-tileCoords.y));
var dx = originalDx;
// Solution is dx + tx and -dx + tx
// This loop will first check +dx and then -dx
// If dx happens to be zero, then it will not run twice
do {
// Absolute x coordinate
int x = -dx + tileCoords.x;
if (x >= 0 && x < tileXCount) {
NavmeshTile tile = tiles[x + z*tileXCount];
if (tile != null) {
if (xzSearch) {
best = tile.bbTree.QueryClosestXZ(position, constraint, ref bestDistance, best);
} else {
best = tile.bbTree.QueryClosest(position, constraint, ref bestDistance, best);
}
}
}
dx = -dx;
} while (dx != originalDx);
}
}
best.node = best.constrainedNode;
best.constrainedNode = null;
best.clampedPosition = best.constClampedPosition;
return best;
}
///
/// Finds the first node which contains position.
/// "Contains" is defined as position is inside the triangle node when seen from above. So only XZ space matters.
/// In case of a multilayered environment, which node of the possibly several nodes
/// containing the point is undefined.
///
/// Returns null if there was no node containing the point. This serves as a quick
/// check for "is this point on the navmesh or not".
///
/// Note that the behaviour of this method is distinct from the GetNearest method.
/// The GetNearest method will return the closest node to a point,
/// which is not necessarily the one which contains it in XZ space.
///
/// See: GetNearest
///
public GraphNode PointOnNavmesh (Vector3 position, NNConstraint constraint) {
if (tiles == null) return null;
var tileCoords = GetTileCoordinates(position);
// Graph borders
if (tileCoords.x < 0 || tileCoords.y < 0 || tileCoords.x >= tileXCount || tileCoords.y >= tileZCount) return null;
NavmeshTile tile = GetTile(tileCoords.x, tileCoords.y);
if (tile != null) {
GraphNode node = tile.bbTree.QueryInside(position, constraint);
return node;
}
return null;
}
/// Fills graph with tiles created by NewEmptyTile
protected void FillWithEmptyTiles () {
for (int z = 0; z < tileZCount; z++) {
for (int x = 0; x < tileXCount; x++) {
tiles[z*tileXCount + x] = NewEmptyTile(x, z);
}
}
}
///
/// Create connections between all nodes.
/// Version: Since 3.7.6 the implementation is thread safe
///
protected static void CreateNodeConnections (TriangleMeshNode[] nodes) {
List connections = ListPool.Claim();
var nodeRefs = ObjectPoolSimple >.Claim();
nodeRefs.Clear();
// Build node neighbours
for (int i = 0; i < nodes.Length; i++) {
TriangleMeshNode node = nodes[i];
int av = node.GetVertexCount();
for (int a = 0; a < av; a++) {
// Recast can in some very special cases generate degenerate triangles which are simply lines
// In that case, duplicate keys might be added and thus an exception will be thrown
// It is safe to ignore the second edge though... I think (only found one case where this happens)
var key = new Int2(node.GetVertexIndex(a), node.GetVertexIndex((a+1) % av));
if (!nodeRefs.ContainsKey(key)) {
nodeRefs.Add(key, i);
}
}
}
for (int i = 0; i < nodes.Length; i++) {
TriangleMeshNode node = nodes[i];
connections.Clear();
int av = node.GetVertexCount();
for (int a = 0; a < av; a++) {
int first = node.GetVertexIndex(a);
int second = node.GetVertexIndex((a+1) % av);
int connNode;
if (nodeRefs.TryGetValue(new Int2(second, first), out connNode)) {
TriangleMeshNode other = nodes[connNode];
int bv = other.GetVertexCount();
for (int b = 0; b < bv; b++) {
/// TODO: This will fail on edges which are only partially shared
if (other.GetVertexIndex(b) == second && other.GetVertexIndex((b+1) % bv) == first) {
connections.Add(new Connection(
other,
(uint)(node.position - other.position).costMagnitude,
(byte)a
));
break;
}
}
}
}
node.connections = connections.ToArrayFromPool();
node.SetConnectivityDirty();
}
nodeRefs.Clear();
ObjectPoolSimple >.Release(ref nodeRefs);
ListPool.Release(ref connections);
}
///
/// Generate connections between the two tiles.
/// The tiles must be adjacent.
///
protected void ConnectTiles (NavmeshTile tile1, NavmeshTile tile2) {
if (tile1 == null || tile2 == null) return;
if (tile1.nodes == null) throw new System.ArgumentException("tile1 does not contain any nodes");
if (tile2.nodes == null) throw new System.ArgumentException("tile2 does not contain any nodes");
int t1x = Mathf.Clamp(tile2.x, tile1.x, tile1.x+tile1.w-1);
int t2x = Mathf.Clamp(tile1.x, tile2.x, tile2.x+tile2.w-1);
int t1z = Mathf.Clamp(tile2.z, tile1.z, tile1.z+tile1.d-1);
int t2z = Mathf.Clamp(tile1.z, tile2.z, tile2.z+tile2.d-1);
int coord, altcoord;
int t1coord, t2coord;
float tileWorldSize;
// Figure out which side that is shared between the two tiles
// and what coordinate index is fixed along that edge (x or z)
if (t1x == t2x) {
coord = 2;
altcoord = 0;
t1coord = t1z;
t2coord = t2z;
tileWorldSize = TileWorldSizeZ;
} else if (t1z == t2z) {
coord = 0;
altcoord = 2;
t1coord = t1x;
t2coord = t2x;
tileWorldSize = TileWorldSizeX;
} else {
throw new System.ArgumentException("Tiles are not adjacent (neither x or z coordinates match)");
}
if (Math.Abs(t1coord-t2coord) != 1) {
throw new System.ArgumentException("Tiles are not adjacent (tile coordinates must differ by exactly 1. Got '" + t1coord + "' and '" + t2coord + "')");
}
// Midpoint between the two tiles
int midpoint = (int)Math.Round((Math.Max(t1coord, t2coord) * tileWorldSize) * Int3.Precision);
#if ASTARDEBUG
Vector3 v1 = new Vector3(-100, 0, -100);
Vector3 v2 = new Vector3(100, 0, 100);
v1[coord] = midpoint*Int3.PrecisionFactor;
v2[coord] = midpoint*Int3.PrecisionFactor;
Debug.DrawLine(v1, v2, Color.magenta);
#endif
TriangleMeshNode[] nodes1 = tile1.nodes;
TriangleMeshNode[] nodes2 = tile2.nodes;
// Find all nodes of the second tile which are adjacent to the border between the tiles.
// This is used to speed up the matching process (the impact can be very significant for large tiles, but is insignificant for small ones).
TriangleMeshNode[] closeToEdge = ArrayPool.Claim(nodes2.Length);
int numCloseToEdge = 0;
for (int j = 0; j < nodes2.Length; j++) {
TriangleMeshNode nodeB = nodes2[j];
int bVertexCount = nodeB.GetVertexCount();
for (int b = 0; b < bVertexCount; b++) {
Int3 bVertex1 = nodeB.GetVertexInGraphSpace(b);
Int3 bVertex2 = nodeB.GetVertexInGraphSpace((b+1) % bVertexCount);
if (Math.Abs(bVertex1[coord] - midpoint) < 2 && Math.Abs(bVertex2[coord] - midpoint) < 2) {
closeToEdge[numCloseToEdge] = nodes2[j];
numCloseToEdge++;
break;
}
}
}
// Find adjacent nodes on the border between the tiles
for (int i = 0; i < nodes1.Length; i++) {
TriangleMeshNode nodeA = nodes1[i];
int aVertexCount = nodeA.GetVertexCount();
// Loop through all *sides* of the node
for (int a = 0; a < aVertexCount; a++) {
// Vertices that the segment consists of
Int3 aVertex1 = nodeA.GetVertexInGraphSpace(a);
Int3 aVertex2 = nodeA.GetVertexInGraphSpace((a+1) % aVertexCount);
// Check if it is really close to the tile border
if (Math.Abs(aVertex1[coord] - midpoint) < 2 && Math.Abs(aVertex2[coord] - midpoint) < 2) {
int minalt = Math.Min(aVertex1[altcoord], aVertex2[altcoord]);
int maxalt = Math.Max(aVertex1[altcoord], aVertex2[altcoord]);
// Degenerate edge
if (minalt == maxalt) continue;
for (int j = 0; j < numCloseToEdge; j++) {
TriangleMeshNode nodeB = closeToEdge[j];
int bVertexCount = nodeB.GetVertexCount();
for (int b = 0; b < bVertexCount; b++) {
Int3 bVertex1 = nodeB.GetVertexInGraphSpace(b);
Int3 bVertex2 = nodeB.GetVertexInGraphSpace((b+1) % bVertexCount);
if (Math.Abs(bVertex1[coord] - midpoint) < 2 && Math.Abs(bVertex2[coord] - midpoint) < 2) {
int minalt2 = Math.Min(bVertex1[altcoord], bVertex2[altcoord]);
int maxalt2 = Math.Max(bVertex1[altcoord], bVertex2[altcoord]);
// Degenerate edge
if (minalt2 == maxalt2) continue;
if (maxalt > minalt2 && minalt < maxalt2) {
// The two nodes seem to be adjacent
// Test shortest distance between the segments (first test if they are equal since that is much faster and pretty common)
if ((aVertex1 == bVertex1 && aVertex2 == bVertex2) || (aVertex1 == bVertex2 && aVertex2 == bVertex1) ||
VectorMath.SqrDistanceSegmentSegment((Vector3)aVertex1, (Vector3)aVertex2, (Vector3)bVertex1, (Vector3)bVertex2) < MaxTileConnectionEdgeDistance*MaxTileConnectionEdgeDistance) {
uint cost = (uint)(nodeA.position - nodeB.position).costMagnitude;
nodeA.AddConnection(nodeB, cost, a);
nodeB.AddConnection(nodeA, cost, b);
}
}
}
}
}
}
}
}
ArrayPool.Release(ref closeToEdge);
}
///
/// Start batch updating of tiles.
/// During batch updating, tiles will not be connected if they are updating with ReplaceTile.
/// When ending batching, all affected tiles will be connected.
/// This is faster than not using batching.
///
public void StartBatchTileUpdate () {
if (batchTileUpdate) throw new System.InvalidOperationException("Calling StartBatchLoad when batching is already enabled");
batchTileUpdate = true;
}
///
/// Destroy several nodes simultaneously.
/// This is faster than simply looping through the nodes and calling the node.Destroy method because some optimizations
/// relating to how connections are removed can be optimized.
///
void DestroyNodes (List nodes) {
for (int i = 0; i < batchNodesToDestroy.Count; i++) {
batchNodesToDestroy[i].TemporaryFlag1 = true;
}
for (int i = 0; i < batchNodesToDestroy.Count; i++) {
var node = batchNodesToDestroy[i];
for (int j = 0; j < node.connections.Length; j++) {
var neighbour = node.connections[j].node;
if (!neighbour.TemporaryFlag1) {
neighbour.RemoveConnection(node);
}
}
// Remove the connections array explicitly for performance.
// Otherwise the Destroy method will try to remove the connections in both directions one by one which is slow.
ArrayPool.Release(ref node.connections, true);
node.Destroy();
}
}
void TryConnect (int tileIdx1, int tileIdx2) {
// If both tiles were flagged, then only connect if tileIdx1 < tileIdx2 to make sure we don't connect the tiles twice
// as this method will be called with swapped arguments as well.
if (tiles[tileIdx1].flag && tiles[tileIdx2].flag && tileIdx1 >= tileIdx2) return;
ConnectTiles(tiles[tileIdx1], tiles[tileIdx2]);
}
///
/// End batch updating of tiles.
/// During batch updating, tiles will not be connected if they are updating with ReplaceTile.
/// When ending batching, all affected tiles will be connected.
/// This is faster than not using batching.
///
public void EndBatchTileUpdate () {
if (!batchTileUpdate) throw new System.InvalidOperationException("Calling EndBatchTileUpdate when batching had not yet been started");
batchTileUpdate = false;
DestroyNodes(batchNodesToDestroy);
batchNodesToDestroy.ClearFast();
for (int i = 0; i < batchUpdatedTiles.Count; i++) tiles[batchUpdatedTiles[i]].flag = true;
for (int i = 0; i < batchUpdatedTiles.Count; i++) {
int x = batchUpdatedTiles[i] % tileXCount, z = batchUpdatedTiles[i] / tileXCount;
if (x > 0) TryConnect(batchUpdatedTiles[i], batchUpdatedTiles[i] - 1);
if (x < tileXCount - 1) TryConnect(batchUpdatedTiles[i], batchUpdatedTiles[i] + 1);
if (z > 0) TryConnect(batchUpdatedTiles[i], batchUpdatedTiles[i] - tileXCount);
if (z < tileZCount - 1) TryConnect(batchUpdatedTiles[i], batchUpdatedTiles[i] + tileXCount);
}
for (int i = 0; i < batchUpdatedTiles.Count; i++) tiles[batchUpdatedTiles[i]].flag = false;
batchUpdatedTiles.ClearFast();
}
///
/// Clear the tile at the specified coordinate.
/// Must be called during a batch update, see .
///
protected void ClearTile (int x, int z) {
if (!batchTileUpdate) throw new System.Exception("Must be called during a batch update. See StartBatchTileUpdate");
var tile = GetTile(x, z);
if (tile == null) return;
var nodes = tile.nodes;
for (int i = 0; i < nodes.Length; i++) {
if (nodes[i] != null) batchNodesToDestroy.Add(nodes[i]);
}
ObjectPool.Release(ref tile.bbTree);
// TODO: Pool tile object and various arrays in it?
tiles[x + z*tileXCount] = null;
}
/// Temporary buffer used in
Dictionary nodeRecyclingHashBuffer = new Dictionary();
///
/// Reuse nodes that keep the exact same vertices after a tile replacement.
/// The reused nodes will be added to the recycledNodeBuffer array at the index corresponding to the
/// indices in the triangle array that its vertices uses.
///
/// All connections on the reused nodes will be removed except ones that go to other graphs.
/// The reused nodes will be removed from the tile by replacing it with a null slot in the node array.
///
/// See:
///
void PrepareNodeRecycling (int x, int z, Int3[] verts, int[] tris, TriangleMeshNode[] recycledNodeBuffer) {
NavmeshTile tile = GetTile(x, z);
if (tile == null || tile.nodes.Length == 0) return;
var nodes = tile.nodes;
var recycling = nodeRecyclingHashBuffer;
for (int i = 0, j = 0; i < tris.Length; i += 3, j++) {
recycling[verts[tris[i+0]].GetHashCode() + verts[tris[i+1]].GetHashCode() + verts[tris[i+2]].GetHashCode()] = j;
}
var connectionsToKeep = ListPool.Claim();
for (int i = 0; i < nodes.Length; i++) {
var node = nodes[i];
Int3 v0, v1, v2;
node.GetVerticesInGraphSpace(out v0, out v1, out v2);
var hash = v0.GetHashCode() + v1.GetHashCode() + v2.GetHashCode();
int newNodeIndex;
if (recycling.TryGetValue(hash, out newNodeIndex)) {
// Technically we should check for a cyclic permutations of the vertices (e.g node a,b,c could become node b,c,a)
// but in almost all cases the vertices will keep the same order. Allocating one or two extra nodes isn't such a big deal.
if (verts[tris[3*newNodeIndex+0]] == v0 && verts[tris[3*newNodeIndex+1]] == v1 && verts[tris[3*newNodeIndex+2]] == v2) {
recycledNodeBuffer[newNodeIndex] = node;
// Remove the node from the tile
nodes[i] = null;
// Only keep connections to nodes on other graphs
// Usually there are no connections to nodes to other graphs and this is faster than removing all connections them one by one
for (int j = 0; j < node.connections.Length; j++) {
if (node.connections[j].node.GraphIndex != node.GraphIndex) {
connectionsToKeep.Add(node.connections[j]);
}
}
ArrayPool.Release(ref node.connections, true);
if (connectionsToKeep.Count > 0) {
node.connections = connectionsToKeep.ToArrayFromPool();
node.SetConnectivityDirty();
connectionsToKeep.Clear();
}
}
}
}
recycling.Clear();
ListPool.Release(ref connectionsToKeep);
}
///
/// Replace tile at index with nodes created from specified navmesh.
/// This will create new nodes and link them to the adjacent tile (unless batching has been started in which case that will be done when batching ends).
///
/// The vertices are assumed to be in 'tile space', that is being in a rectangle with
/// one corner at the origin and one at (, 0, .
///
/// Note: The vertex and triangle arrays may be modified and will be stored with the tile data.
/// do not modify them after this method has been called.
///
/// See:
///
public void ReplaceTile (int x, int z, Int3[] verts, int[] tris) {
int w = 1, d = 1;
if (x + w > tileXCount || z+d > tileZCount || x < 0 || z < 0) {
throw new System.ArgumentException("Tile is placed at an out of bounds position or extends out of the graph bounds ("+x+", " + z + " [" + w + ", " + d+ "] " + tileXCount + " " + tileZCount + ")");
}
if (tris.Length % 3 != 0) throw new System.ArgumentException("Triangle array's length must be a multiple of 3 (tris)");
if (verts.Length > VertexIndexMask) {
Debug.LogError("Too many vertices in the tile (" + verts.Length + " > " + VertexIndexMask +")\nYou can enable ASTAR_RECAST_LARGER_TILES under the 'Optimizations' tab in the A* Inspector to raise this limit. Or you can use a smaller tile size to reduce the likelihood of this happening.");
verts = new Int3[0];
tris = new int[0];
}
var wasNotBatching = !batchTileUpdate;
if (wasNotBatching) StartBatchTileUpdate();
Profiler.BeginSample("Tile Initialization");
//Create a new navmesh tile and assign its settings
var tile = new NavmeshTile {
x = x,
z = z,
w = w,
d = d,
tris = tris,
bbTree = ObjectPool.Claim(),
graph = this,
};
if (!Mathf.Approximately(x*TileWorldSizeX*Int3.FloatPrecision, (float)Math.Round(x*TileWorldSizeX*Int3.FloatPrecision))) Debug.LogWarning("Possible numerical imprecision. Consider adjusting tileSize and/or cellSize");
if (!Mathf.Approximately(z*TileWorldSizeZ*Int3.FloatPrecision, (float)Math.Round(z*TileWorldSizeZ*Int3.FloatPrecision))) Debug.LogWarning("Possible numerical imprecision. Consider adjusting tileSize and/or cellSize");
var offset = (Int3) new Vector3((x * TileWorldSizeX), 0, (z * TileWorldSizeZ));
for (int i = 0; i < verts.Length; i++) {
verts[i] += offset;
}
tile.vertsInGraphSpace = verts;
tile.verts = (Int3[])verts.Clone();
transform.Transform(tile.verts);
Profiler.BeginSample("Clear Previous Tiles");
// Create a backing array for the new nodes
var nodes = tile.nodes = new TriangleMeshNode[tris.Length/3];
// Recycle any nodes that are in the exact same spot after replacing the tile.
// This also keeps e.g penalties and tags and other connections which might be useful.
// It also avoids trashing the paths for the RichAI component (as it will have to immediately recalculate its path
// if it discovers that its path contains destroyed nodes).
PrepareNodeRecycling(x, z, tile.vertsInGraphSpace, tris, tile.nodes);
// Remove previous tiles (except the nodes that were recycled above)
ClearTile(x, z);
Profiler.EndSample();
Profiler.EndSample();
Profiler.BeginSample("Assign Node Data");
// Set tile
tiles[x + z*tileXCount] = tile;
batchUpdatedTiles.Add(x + z*tileXCount);
// Create nodes and assign triangle indices
CreateNodes(nodes, tile.tris, x + z*tileXCount, (uint)active.data.GetGraphIndex(this));
Profiler.EndSample();
Profiler.BeginSample("AABBTree Rebuild");
tile.bbTree.RebuildFrom(nodes);
Profiler.EndSample();
Profiler.BeginSample("Create Node Connections");
CreateNodeConnections(tile.nodes);
Profiler.EndSample();
Profiler.BeginSample("Connect With Neighbours");
if (wasNotBatching) EndBatchTileUpdate();
Profiler.EndSample();
}
protected void CreateNodes (TriangleMeshNode[] buffer, int[] tris, int tileIndex, uint graphIndex) {
if (buffer == null || buffer.Length < tris.Length/3) throw new System.ArgumentException("buffer must be non null and at least as large as tris.Length/3");
// This index will be ORed to the triangle indices
tileIndex <<= TileIndexOffset;
// Create nodes and assign vertex indices
for (int i = 0; i < buffer.Length; i++) {
var node = buffer[i];
// Allow the buffer to be partially filled in already to allow for recycling nodes
if (node == null) node = buffer[i] = new TriangleMeshNode(active);
// Reset all relevant fields on the node (even on recycled nodes to avoid exposing internal implementation details)
node.Walkable = true;
node.Tag = 0;
node.Penalty = initialPenalty;
node.GraphIndex = graphIndex;
// The vertices stored on the node are composed
// out of the triangle index and the tile index
node.v0 = tris[i*3+0] | tileIndex;
node.v1 = tris[i*3+1] | tileIndex;
node.v2 = tris[i*3+2] | tileIndex;
// Make sure the triangle is clockwise in graph space (it may not be in world space since the graphs can be rotated)
// Note that we also modify the original triangle array because if the graph is cached then we will re-initialize the nodes from that array and assume all triangles are clockwise.
if (RecalculateNormals && !VectorMath.IsClockwiseXZ(node.GetVertexInGraphSpace(0), node.GetVertexInGraphSpace(1), node.GetVertexInGraphSpace(2))) {
Memory.Swap(ref tris[i*3+0], ref tris[i*3+2]);
Memory.Swap(ref node.v0, ref node.v2);
}
node.UpdatePositionFromVertices();
}
}
public NavmeshBase () {
navmeshUpdateData = new NavmeshUpdates.NavmeshUpdateSettings(this);
}
public override void OnDrawGizmos (Pathfinding.Util.RetainedGizmos gizmos, bool drawNodes) {
if (!drawNodes) {
return;
}
using (var helper = gizmos.GetSingleFrameGizmoHelper(active)) {
var bounds = new Bounds();
bounds.SetMinMax(Vector3.zero, forcedBoundsSize);
// Draw a write cube using the latest transform
// (this makes the bounds update immediately if some field is changed in the editor)
helper.builder.DrawWireCube(CalculateTransform(), bounds, Color.white);
}
if (tiles != null && (showMeshSurface || showMeshOutline || showNodeConnections)) {
var baseHasher = new RetainedGizmos.Hasher(active);
baseHasher.AddHash(showMeshOutline ? 1 : 0);
baseHasher.AddHash(showMeshSurface ? 1 : 0);
baseHasher.AddHash(showNodeConnections ? 1 : 0);
int startTileIndex = 0;
var hasher = baseHasher;
var hashedNodes = 0;
// Update navmesh vizualizations for
// the tiles that have been changed
for (int i = 0; i < tiles.Length; i++) {
// This may happen if an exception has been thrown when the graph was scanned.
// We don't want the gizmo code to start to throw exceptions as well then as
// that would obscure the actual source of the error.
if (tiles[i] == null) continue;
// Calculate a hash of the tile
var nodes = tiles[i].nodes;
for (int j = 0; j < nodes.Length; j++) {
hasher.HashNode(nodes[j]);
}
hashedNodes += nodes.Length;
// Note: do not batch more than some large number of nodes at a time.
// Also do not batch more than a single "row" of the graph at once
// because otherwise a small change in one part of the graph could invalidate
// the caches almost everywhere else.
// When restricting the caches to row by row a change in a row
// will never invalidate the cache in another row.
if (hashedNodes > 1024 || (i % tileXCount) == tileXCount - 1 || i == tiles.Length - 1) {
if (!gizmos.Draw(hasher)) {
using (var helper = gizmos.GetGizmoHelper(active, hasher)) {
if (showMeshSurface || showMeshOutline) {
CreateNavmeshSurfaceVisualization(tiles, startTileIndex, i + 1, helper);
CreateNavmeshOutlineVisualization(tiles, startTileIndex, i + 1, helper);
}
if (showNodeConnections) {
for (int ti = startTileIndex; ti <= i; ti++) {
if (tiles[ti] == null) continue;
var tileNodes = tiles[ti].nodes;
for (int j = 0; j < tileNodes.Length; j++) {
helper.DrawConnections(tileNodes[j]);
}
}
}
}
}
gizmos.Draw(hasher);
startTileIndex = i + 1;
hasher = baseHasher;
hashedNodes = 0;
}
}
}
if (active.showUnwalkableNodes) DrawUnwalkableNodes(active.unwalkableNodeDebugSize);
}
/// Creates a mesh of the surfaces of the navmesh for use in OnDrawGizmos in the editor
void CreateNavmeshSurfaceVisualization (NavmeshTile[] tiles, int startTile, int endTile, GraphGizmoHelper helper) {
int numNodes = 0;
for (int i = startTile; i < endTile; i++) if (tiles[i] != null) numNodes += tiles[i].nodes.Length;
// Vertex array might be a bit larger than necessary, but that's ok
var vertices = ArrayPool.Claim(numNodes*3);
var colors = ArrayPool.Claim(numNodes*3);
int offset = 0;
for (int i = startTile; i < endTile; i++) {
var tile = tiles[i];
if (tile == null) continue;
for (int j = 0; j < tile.nodes.Length; j++) {
var node = tile.nodes[j];
Int3 v0, v1, v2;
node.GetVertices(out v0, out v1, out v2);
int index = offset + j*3;
vertices[index + 0] = (Vector3)v0;
vertices[index + 1] = (Vector3)v1;
vertices[index + 2] = (Vector3)v2;
var color = helper.NodeColor(node);
colors[index + 0] = colors[index + 1] = colors[index + 2] = color;
}
offset += tile.nodes.Length * 3;
}
if (showMeshSurface) helper.DrawTriangles(vertices, colors, numNodes);
if (showMeshOutline) helper.DrawWireTriangles(vertices, colors, numNodes);
// Return lists to the pool
ArrayPool.Release(ref vertices);
ArrayPool.Release(ref colors);
}
/// Creates an outline of the navmesh for use in OnDrawGizmos in the editor
static void CreateNavmeshOutlineVisualization (NavmeshTile[] tiles, int startTile, int endTile, GraphGizmoHelper helper) {
var sharedEdges = new bool[3];
for (int i = startTile; i < endTile; i++) {
var tile = tiles[i];
if (tile == null) continue;
for (int j = 0; j < tile.nodes.Length; j++) {
sharedEdges[0] = sharedEdges[1] = sharedEdges[2] = false;
var node = tile.nodes[j];
for (int c = 0; c < node.connections.Length; c++) {
var other = node.connections[c].node as TriangleMeshNode;
// Loop through neighbours to figure out which edges are shared
if (other != null && other.GraphIndex == node.GraphIndex) {
for (int v = 0; v < 3; v++) {
for (int v2 = 0; v2 < 3; v2++) {
if (node.GetVertexIndex(v) == other.GetVertexIndex((v2+1)%3) && node.GetVertexIndex((v+1)%3) == other.GetVertexIndex(v2)) {
// Found a shared edge with the other node
sharedEdges[v] = true;
v = 3;
break;
}
}
}
}
}
var color = helper.NodeColor(node);
for (int v = 0; v < 3; v++) {
if (!sharedEdges[v]) {
helper.builder.DrawLine((Vector3)node.GetVertex(v), (Vector3)node.GetVertex((v+1)%3), color);
}
}
}
}
}
///
/// Serializes Node Info.
/// Should serialize:
/// - Base
/// - Node Flags
/// - Node Penalties
/// - Node
/// - Node Positions (if applicable)
/// - Any other information necessary to load the graph in-game
/// All settings marked with json attributes (e.g JsonMember) have already been
/// saved as graph settings and do not need to be handled here.
///
/// It is not necessary for this implementation to be forward or backwards compatible.
///
/// See:
///
protected override void SerializeExtraInfo (GraphSerializationContext ctx) {
BinaryWriter writer = ctx.writer;
if (tiles == null) {
writer.Write(-1);
return;
}
writer.Write(tileXCount);
writer.Write(tileZCount);
for (int z = 0; z < tileZCount; z++) {
for (int x = 0; x < tileXCount; x++) {
NavmeshTile tile = tiles[x + z*tileXCount];
if (tile == null) {
throw new System.Exception("NULL Tile");
//writer.Write (-1);
//continue;
}
writer.Write(tile.x);
writer.Write(tile.z);
if (tile.x != x || tile.z != z) continue;
writer.Write(tile.w);
writer.Write(tile.d);
writer.Write(tile.tris.Length);
for (int i = 0; i < tile.tris.Length; i++) writer.Write(tile.tris[i]);
writer.Write(tile.verts.Length);
for (int i = 0; i < tile.verts.Length; i++) {
ctx.SerializeInt3(tile.verts[i]);
}
writer.Write(tile.vertsInGraphSpace.Length);
for (int i = 0; i < tile.vertsInGraphSpace.Length; i++) {
ctx.SerializeInt3(tile.vertsInGraphSpace[i]);
}
writer.Write(tile.nodes.Length);
for (int i = 0; i < tile.nodes.Length; i++) {
tile.nodes[i].SerializeNode(ctx);
}
}
}
}
protected override void DeserializeExtraInfo (GraphSerializationContext ctx) {
BinaryReader reader = ctx.reader;
tileXCount = reader.ReadInt32();
if (tileXCount < 0) return;
tileZCount = reader.ReadInt32();
transform = CalculateTransform();
tiles = new NavmeshTile[tileXCount * tileZCount];
//Make sure mesh nodes can reference this graph
TriangleMeshNode.SetNavmeshHolder((int)ctx.graphIndex, this);
for (int z = 0; z < tileZCount; z++) {
for (int x = 0; x < tileXCount; x++) {
int tileIndex = x + z*tileXCount;
int tx = reader.ReadInt32();
if (tx < 0) throw new System.Exception("Invalid tile coordinates (x < 0)");
int tz = reader.ReadInt32();
if (tz < 0) throw new System.Exception("Invalid tile coordinates (z < 0)");
// This is not the origin of a large tile. Refer back to that tile.
if (tx != x || tz != z) {
tiles[tileIndex] = tiles[tz*tileXCount + tx];
continue;
}
var tile = tiles[tileIndex] = new NavmeshTile {
x = tx,
z = tz,
w = reader.ReadInt32(),
d = reader.ReadInt32(),
bbTree = ObjectPool.Claim(),
graph = this,
};
int trisCount = reader.ReadInt32();
if (trisCount % 3 != 0) throw new System.Exception("Corrupt data. Triangle indices count must be divisable by 3. Read " + trisCount);
tile.tris = new int[trisCount];
for (int i = 0; i < tile.tris.Length; i++) tile.tris[i] = reader.ReadInt32();
tile.verts = new Int3[reader.ReadInt32()];
for (int i = 0; i < tile.verts.Length; i++) {
tile.verts[i] = ctx.DeserializeInt3();
}
if (ctx.meta.version.Major >= 4) {
tile.vertsInGraphSpace = new Int3[reader.ReadInt32()];
if (tile.vertsInGraphSpace.Length != tile.verts.Length) throw new System.Exception("Corrupt data. Array lengths did not match");
for (int i = 0; i < tile.verts.Length; i++) {
tile.vertsInGraphSpace[i] = ctx.DeserializeInt3();
}
} else {
// Compatibility
tile.vertsInGraphSpace = new Int3[tile.verts.Length];
tile.verts.CopyTo(tile.vertsInGraphSpace, 0);
transform.InverseTransform(tile.vertsInGraphSpace);
}
int nodeCount = reader.ReadInt32();
tile.nodes = new TriangleMeshNode[nodeCount];
// Prepare for storing in vertex indices
tileIndex <<= TileIndexOffset;
for (int i = 0; i < tile.nodes.Length; i++) {
var node = new TriangleMeshNode(active);
tile.nodes[i] = node;
node.DeserializeNode(ctx);
node.v0 = tile.tris[i*3+0] | tileIndex;
node.v1 = tile.tris[i*3+1] | tileIndex;
node.v2 = tile.tris[i*3+2] | tileIndex;
node.UpdatePositionFromVertices();
}
tile.bbTree.RebuildFrom(tile.nodes);
}
}
}
protected override void PostDeserialization (GraphSerializationContext ctx) {
// Compatibility
if (ctx.meta.version < AstarSerializer.V4_1_0 && tiles != null) {
Dictionary conns = tiles.SelectMany(s => s.nodes).ToDictionary(n => n, n => n.connections ?? new Connection[0]);
// We need to recalculate all connections when upgrading data from earlier than 4.1.0
// as the connections now need information about which edge was used.
// This may remove connections for e.g off-mesh links.
foreach (var tile in tiles) CreateNodeConnections(tile.nodes);
foreach (var tile in tiles) ConnectTileWithNeighbours(tile);
// Restore any connections that were contained in the serialized file but didn't get added by the method calls above
GetNodes(node => {
var triNode = node as TriangleMeshNode;
foreach (var conn in conns[triNode].Where(conn => !triNode.ContainsConnection(conn.node)).ToList()) {
triNode.AddConnection(conn.node, conn.cost, conn.shapeEdge);
}
});
}
// Make sure that the transform is up to date.
// It is assumed that the current graph settings correspond to the correct
// transform as it is not serialized itself.
transform = CalculateTransform();
}
}
}