
This	is	an	excerpt	from	the	full	documentation.	You	can	view	the	full	documentation	here
(http://arongranberg.com/astar/docs).	Most	links	on	this	page	will	just	take	you	to	the	full	documentation.

Get	Started	with	the	A*	Pathfinding	Project.
Get	Started	with	the	A*	Pathfinding	Project
Pathfinding	is	all	about	finding	the	best	path	between	point	A	and	B.	This	is	what	the	A*	Pathfinding	Project	does,	in	this	tutorial
you	will	learn	how	to	set	up	the	project	in	a	new	scene	and	get	a	simple	AI	moving	while	avoiding	obstacles.
This	AI	you	will	write	will	not	be	very	advanced,	it	is	just	the	minimal	amount	of	code	needed	to	get	moving	and	following	a
path.	If	you	want	a	more	advanced	AI	you	can	either	extend	the	script	you	will	write	in	this	tutorial	or	use	(or	extend)	the	AIPath
or	RichAI	scripts	included	in	the	package	(see	part	2	for	basic	usage	of	the	RichAI	component).

The	first	thing	you	need	to	do,	if	you	haven't	done	so	already,	is	to	download	the	A*	Pathfinding	Project
The	project	can	be	downloaded	from	here	(http://www.arongranberg.com/astar/download),	you	can	either	download	the	free
version	with	some	limited	features	(but	still	very	powerful)	or	buy	the	pro	version	with	more	cool	stuff	included.
If	you	want,	you	can	explore	the	different	example	scenes	in	the	project	before	you	start	with	the	next	section.

If	you	are	using	UnityScript,	you	should	first	follow	the	instructions	on	the	page	Working	with	Javascript
(http://arongranberg.com/astar/docs/javscript.html).
All	example	code	is	in	C#.	But	I	hope	it	will	not	be	too	hard	following	them	since	C#	and	Unityscript	are	quite	similar.	You
should	know	that	UnityScript	does	not	support	optional	parameters	so	you	must	always	pass	all	parameters	to	a	function.	If	you
get	an	error	message	that	the	function	you	are	trying	to	call	has	no	such	overload,	this	might	be	the	problem.	Then	check	the
docs	for	all	parameters	and	their	default	values.

Depending	on	which	platform	you	are	building	for,	you	might	want	to	read	this	page	first:	Deploying	for	mobile/uwp
(http://arongranberg.com/astar/docs/iphone.html)

At	this	stage,	if	you	are	getting	any	compiler	errors	from	the	code	you	can	first	check	the	Readme_upgrading.txt	file	included,	if
you	are	upgrading	from	an	older	version.	A	common	problem	is	that	classes	in	the	A*	Pathfinding	Project	have	the	same	name
as	classes	in	your	project.	This	can	be	solved	either	by	renaming	one	of	the	classes,	or	placing	your	class	in	a	namespace	so	it
will	not	conflict	with	the	other	class	anymore.
If	you	are	still	getting	errors,	take	a	look	at	the	forums	(see	http://forum.arongranberg.com	(http://forum.arongranberg.com))	to
see	if	anyone	else	has	the	same	problem	or	post	a	new	question	there.

The	central	script	of	the	A*	Pathfinding	Project	is	the	script	'astarpath.cs
(http://arongranberg.com/astar/docs/<undefined>)',	it	acts	as	a	central	hub	for	everything	else.
In	the	AstarPath	(http://arongranberg.com/astar/docs/astarpath.html)	inspector	you	create	all	graphs	and	adjust	all
settings.
There	should	always	be	one	(always	one,	no	more)	astarpath.cs	(http://arongranberg.com/astar/docs/<undefined>)
component	in	a	scene	which	uses	Pathfinding.
The	astarpath.cs	(http://arongranberg.com/astar/docs/<undefined>)	script	can	be	found	at	Menu	bar–>Components–
>Pathfinding–>Pathfinder
The	second	most	important	component	is	the	'Seeker.cs	(http://arongranberg.com/astar/docs/<undefined>)'	component,
a	Seeker	component	should	be	attached	to	every	GameObject	which	uses	Pathfinding	(e.g	all	AIs).
The	Seeker	component	handles	path	calls	for	one	unit	and	post	processes	the	paths.	The	Seeker	isn't	needed,	but	it
makes	Pathfinding	easier.
To	make	the	AIs	move	there	are	a	number	of	included	movement	scripts	in	the	package	(e.g	AIPath
(http://arongranberg.com/astar/docs/aipath.html),	RichAI,	AILerp	(http://arongranberg.com/astar/docs/ailerp.html)).	You
may	use	one	of	the	included	ones	or	you	can	write	your	own	(see	Writing	a	movement	script
(http://arongranberg.com/astar/docs/custom_movement_script.html)).	You	can	find	a	comparison	of	the	built-in	movement
scripts	here:	Movement	scripts	(http://arongranberg.com/astar/docs/movementscripts.html).

http://arongranberg.com/astar/docs
http://www.arongranberg.com/astar/download
http://arongranberg.com/astar/docs/javscript.html
http://arongranberg.com/astar/docs/iphone.html
http://forum.arongranberg.com/
http://arongranberg.com/astar/docs/%3Cundefined%3E
http://arongranberg.com/astar/docs/astarpath.html
http://arongranberg.com/astar/docs/%3Cundefined%3E
http://arongranberg.com/astar/docs/%3Cundefined%3E
http://arongranberg.com/astar/docs/%3Cundefined%3E
http://arongranberg.com/astar/docs/aipath.html
http://arongranberg.com/astar/docs/ailerp.html
http://arongranberg.com/astar/docs/custom_movement_script.html
http://arongranberg.com/astar/docs/movementscripts.html


Lastly	there	are	the	modifier	scripts	(e.g	SimpleSmoothModifier.cs	(http://arongranberg.com/astar/docs/<undefined>)).
Modifiers	post-processes	paths	to	smooth	or	simplify	them,	if	a	modifier	is	attached	to	the	same	GameObject	as	a	Seeker
it	will	post-process	all	paths	that	Seeker	handles.	See	Using	Modifiers
(http://arongranberg.com/astar/docs/modifiers2.html).

If	you	prefer	a	video	tutorial	instead	of	a	text	tutorial.	Here	is	a	video	for	you.	The	video	tutorial	takes	a	more	high-level
approach	and	you	will	learn	how	to	use	the	built-in	movement	scripts	instead	of	writing	a	custom	one.	Since	the	video	and	text
tutorials	cover	slightly	different	ground,	it	is	not	a	bad	idea	to	take	a	look	at	both.

You	can	also	take	a	look	at	the	excellent	tutorial	by	Gabriel	Williams	(Unity	Cookie)	in	part	8	of	the	series	on	making	a	Tower
Defence	game:	https://www.youtube.com/watch?feature=player_embedded&v=PUJSvd53v4k	(https://www.youtube.com/watch?
feature=player_embedded&v=PUJSvd53v4k)	The	video	covers	most	things	which	will	be	discussed	in	the	text	tutorial.

Create	a	new	scene,	name	it	"PathfindingTest".	Now	let's	create	something	which	an	AI	could	walk	on	and	something	for	it	to
avoid:	add	a	plane	to	the	scene,	place	it	in	the	scene	origin	(0,0,0)	and	scale	it	to	10,10,10.
Create	a	new	layer	(Edit->Project	Settings->Tags)	named	"Ground"	and	place	the	plane	in	that	layer.	Now	create	some	cubes	of
differerent	scales	and	place	them	on	the	plane,	these	will	be	obstacles	which	the	AI	should	avoid.	Place	them	in	a	new	layer
named	"Obstacles".
Your	scene	should	now	look	something	like	this:

Now	we	have	ground	for	an	AI	to	stand	on	and	obstacles	for	it	to	avoid.	So	now	we	are	going	to	add	the	A*	Pathfinding	System
to	the	scene	to	enable	Pathfinding.
Create	a	new	GameObject,	name	it	"A*",	add	the	"AstarPath"	component	to	it	(Menu	bar–>Components–>Pathfinding–
>Pathfinder).

https://www.youtube.com/watch?v=5QT5Czfe0YE
http://arongranberg.com/astar/docs/%3Cundefined%3E
http://arongranberg.com/astar/docs/modifiers2.html
https://www.youtube.com/watch?feature=player_embedded&v=PUJSvd53v4k


The	AstarPath	(http://arongranberg.com/astar/docs/astarpath.html)	inspector	is	divided	into	several	parts.	The	two	most
important	is	the	Graphs	area	and	the	Scan	button	at	the	bottom.
The	Graphs	area	holds	all	the	graphs	in	your	scene,	you	may	have	up	to	256	but	usually	1	or	2	will	be	sufficient.	A	single	graph
is	usually	preferred	for	simplicity.
If	you	open	the	Graphs	area	by	clicking	on	it	you	will	see	a	list	of	graphs	which	you	can	add.	I	can't	explain	them	all	here	but
the	two	main	ones	is	the	Grid	Graph	(http://arongranberg.com/astar/docs/gridgraph.html)	which	generates	nodes	in	a	grid
pattern	and	the	Recast	Graph	which	automatically	calculates	a	navmesh	from	the	world	(only	available	in	the	pro	version).
The	Scan	button	is	for	updating	the	graphs,	this	is	also	done	on	startup	(unless	the	startup	is	cached,	more	about	that	in
another	part	(http://arongranberg.com/astar/docs/saveloadgraphs.html))	and	some	graphs	will	do	it	automatically	when
changing	the	graph	settings	and	the	scanning	won't	cause	any	lag.
There	is	also	a	shortcut	(http://arongranberg.com/astar/docs/shortcuts.html)	to	use	Cmd+Alt+S	(mac)	or	Ctrl+Alt+S	(windows).
For	this	tutorial	we	will	create	a	Grid	Graph,	after	adding	it,	click	on	the	new	Grid	Graph
(http://arongranberg.com/astar/docs/gridgraph.html)	label	to	bring	up	the	graph	inspector.

As	the	name	implies,	the	GridGraph	will	generate	a	grid	of	nodes,	width*depth.	A	grid	can	be	positioned	anywhere	in	the	scene
and	you	can	rotate	it	any	way	you	want.
The	Node	Size	variable	determines	how	large	a	square/node	in	the	grid	is,	for	this	tutorial	you	can	leave	it	at	1,	so	the	nodes
will	be	spaced	1	unit	apart.
The	position	needs	to	be	changed	though.	Switch	to	bottom-left	in	the	small	selector	to	the	right	of	the	position	field	(currently
named	"Center"),	then	enter	(-50,-0.1,-50).	The	-0.1	is	to	avoid	floating	point	errors,	in	our	scene	the	ground	is	at	Y=0,	if	the
graph	was	to	have	position	Y=0	too,	we	might	get	annoying	floating	point	errors	when	casting	rays	against	it	for	example	(like
the	height	check	does).
To	make	the	grid	fit	our	scene	we	need	to	change	the	width	and	depth	variables,	set	both	to	100	in	this	case.	You	can	see	that
the	grid	is	correctly	positioned	by	the	white	bounding	rectangle	in	the	scene	view	which	should	now	be	enclosing	the	plane
exactly.

In	order	to	place	the	nodes	at	their	correct	height,	the	A*	system	fires	off	a	bunch	of	rays	against	the	scene	to	see	where	they
hit.	That's	the	Height	Testing	settings.
A	ray,	optionally	thick	(as	opposed	to	a	line),	is	fired	from	[Ray	Length]	units	above	the	grid	downwards,	a	node	is	placed	where
it	hits.	If	it	doesn't	hit	anything,	it	is	either	made	unwalkable	if	the	Unwalkable	When	No	Ground	variable	is	toggled	or	the	node
is	placed	at	Y=0	relative	to	the	grid	if	it	is	set	to	false.
We	need	to	change	the	mask	used,	currently	it	includes	everything,	but	that	would	include	our	obstacles	as	well,	and	we	don't
want	that.	So	set	the	Mask	to	only	include	the	"Ground"	layer	which	we	created	earlier.

When	a	node	has	been	placed,	it	is	checked	for	walkability,	this	can	be	done	with	a	Sphere,	Capsule	or	a	Ray.	Usually	a	capsule
is	used	with	the	same	diameter	and	height	as	the	AI	character	which	is	going	to	be	walking	around	in	the	world,	preferably	with
some	margin	though.

http://arongranberg.com/astar/docs/astarpath.html
http://arongranberg.com/astar/docs/gridgraph.html
http://arongranberg.com/astar/docs/saveloadgraphs.html
http://arongranberg.com/astar/docs/shortcuts.html
http://arongranberg.com/astar/docs/gridgraph.html


Our	AI	will	have	the	standard	diameter	and	height	of	1	and	2	world	units	respectively,	but	we	will	set	the	diameter	and	height
for	the	collision	testing	to	2	and	2	to	get	some	margin.
Next,	to	make	the	system	aware	of	the	obstacles	we	placed,	we	need	to	change	the	mask	for	the	Collision	Testing,	this	time	set
it	to	contain	only	the	"Obstacles"	layer	as	we	wouldn't	want	our	ground	to	be	treated	as	an	obstacle.
Now	everything	should	be	set	up	correctly	to	scan	the	graph.
Press	Scan.	Wait	a	fraction	of	a	second	and	you've	got	a	generated	grid!	(if	you	have	done	everything	correctly,	that	is,
compare	your	settings	to	the	image	below,	also	check	that	Show	Graphs	is	true)

What	is	a	pathfinding	test	without	some	moving	stuff?	Not	fun	at	all,	so	let's	add	an	AI	to	play	around	with.
Create	a	capsule	and	add	the	Character	Controller	component	to	it,	also	place	it	somewhere	visible	on	the	plane.
Add	the	Seeker	component	to	the	AI,	this	script	is	a	helper	script	for	calling	requesting	paths	from	other	scripts,	it	can	also
handle	path	modifiers	which	can	e.g	smooth	the	path	or	simplify	it	using	raycasts.
There	are	2	alternatives	now.	You	can	either	write	your	own	movement	script	or	you	can	use	one	of	the	built-in	movement
scripts.	I	recommend	following	the	tutorial	for	writing	a	custom	movement	script	even	if	you	end	up	using	one	of	the	built-in
ones	in	your	game	because	it	makes	it	easier	to	understand	how	the	system	works	under	the	hood.
Check	out	this	subpage	for	the	tutorial:	Writing	a	movement	script
(http://arongranberg.com/astar/docs/custom_movement_script.html)
There	are	also	included	movement	scripts	in	the	project	which	you	can	use	if	you	don't	want	to	write	your	own	script.	The
included	scripts	are	much	more	advanced	than	what	you	write	in	the	tutorial	linked	above.	The	included	scripts	are	called
AIPath	(http://arongranberg.com/astar/docs/aipath.html),	RichAI	and	AILerp	(http://arongranberg.com/astar/docs/ailerp.html).
The	AIPath	script	can	be	used	on	any	graph	while	RichAI	is	primarily	for	navmesh	based	graphs.	While	the	AIPath	and	RichAI
scripts	follow	the	path	loosely,	the	AILerp	script	uses	interpolation	to	move	along	the	path	very	precisely,	but	perhaps	not	in	the
most	realistic	way.	Which	one	you	use	depends	on	your	game.

For	more	information	about	the	included	movement	scripts,	take	a	look	at	Movement	scripts
(http://arongranberg.com/astar/docs/movementscripts.html).	You	can	also	see	how	they	are	used	in	the	included	example
scenes.

For	this	tutorial	you	can	attach	the	AIPath	(http://arongranberg.com/astar/docs/aipath.html)	component	to	the	AI.	Create	a	new
GameObject	named	"Target"	and	position	it	where	you	want	the	AI	to	move.	Then	attach	the	AIDestinationSetter
(http://arongranberg.com/astar/docs/aidestinationsetter.html)	component	to	the	AI.	This	component	is	just	a	very	simple	helper
script	which	will	tell	the	AIPath	script	to	move	to	a	particular	location.	You	will	likely	replace	this	script	with	your	own	game
specific	script	in	the	future.	The	AIDestinationSetter	component	has	a	single	field	called	"target",	assign	the	"Target"
GameObject	that	you	created	earlier	to	this	field.
If	you	press	play	now	the	AI	should	move	to	the	target.	How	the	movement	scripts	work	and	how	to	configure	them	is	explained
in	more	detail	in	the	video	tutorial	linked	above.	Take	a	look	at	that	if	something	doesn't	seem	to	work.

Now	you	have	learned	how	to	set	up	a	simple	grid	graph	and	how	to	calculate	paths	Pathfinding,	but	surely	there	must	be	a
way	to	get	those	paths	to	look	a	bit	smoother?
Sure	it	is.	Path	smoothing	and	simplification	scripts	are	called	Path	Modifiers	and	are	scripts	which	can	be	added	to	the	same

http://arongranberg.com/astar/docs/custom_movement_script.html
http://arongranberg.com/astar/docs/aipath.html
http://arongranberg.com/astar/docs/ailerp.html
http://arongranberg.com/astar/docs/movementscripts.html
http://arongranberg.com/astar/docs/aipath.html
http://arongranberg.com/astar/docs/aidestinationsetter.html


GameObject	as	a	Seeker.
The	most	straight	forward	one	is	the	Simple	Smooth	modifier	which	can	be	found	at	Menu	bar–>Components–>Pathfinding–
>Modifiers–>Simple	Smooth.	Add	that	to	our	AI.
What	this	modifier	is	going	to	do,	is	to	subdivide	the	path	a	number	of	times	until	each	segment	becomes	smaller	than	the	Max
Segment	Length	variable.	Then	it	will	smooth	the	path	by	moving	the	points	closer	to	each	other.	The	modifier	has	a	number	of
settings,	I	won't	go	through	all	of	them	here.	See	the	SimpleSmoothModifier	documentation	for	more	info	about	each	variable.
For	this	tutorial	you	can	set	Max	Segment	Length	to,	say	1.	Iterations	to	5	and	Strength	to	0.25.	Experiment	with	it	to	get	good
values.
Now	press	play	again,	the	path	should	look	much	smoother,	just	as	we	wanted.

Smoothers	don't	usually	take	world	geometry	or	the	graph	into	account,	so	be	careful	with	applying	too	much	smoothing
since	that	could	cause	paths	to	pass	through	unwalkable	areas.

Another	good	modifier	to	use	is	the	FunnelModifier	(http://arongranberg.com/astar/docs/funnelmodifier.html)	which	will	simplify
the	path	a	great	deal.	This	modifier	is	almost	always	used	when	using	navmesh/recast	graphs.
Read	more	about	modifiers	on	the	page	Using	Modifiers	(http://arongranberg.com/astar/docs/modifiers2.html).

Every	time	a	path	is	calculated	by	the	system	it	can	optionally	be	logged	to	the	console.	This	can	be	a	big	help	in	understanding
what	the	system	is	doing	and	also	to	spot	performance	issues.	Logging	is	not	free	however,	so	for	release	builds	it	is
recommended	that	you	disable	it.
You	can	change	the	logging	settings	under	the	A*	Inspector	->	Settings	->	Debug	tab.

Use	less	debugging	to	improve	performance	(a	bit)	or	just	to	get	rid	of	the	Console	spam.	Use	more	debugging	(heavy)	if	you
want	more	information	about	what	the	pathfinding	scripts	are	doing.	The	InGame	option	will	display	the	latest	path	log	using	in-
game	GUI.

That	was	the	end	of	the	Get	Started	tutorial	part	1.	I	hope	you	learned	something	from	it.
From	here	on	you	can	explore	the	rest	of	the	documentation	or	dig	straight	in	to	the	project.
If	you	want	a	little	better	AI,	you	can	use	the	AIPath	script	which	is	included	in	the	project.
You	can	continue	with	the	next	part	of	the	get	started	tutorial,	where	we	will	use	navmesh	graphs:	Using	navmeshes
(http://arongranberg.com/astar/docs/getstarted2.html)
You	can	also	take	a	look	in	the	sidebar,	there	you	will	find	a	number	of	tutorials	for	how	to	use	the	package.
Good	Luck!

This	is	an	excerpt	from	the	full	documentation.	You	can	view	the	full	documentation	here
(http://arongranberg.com/astar/docs).	Most	links	on	this	page	will	just	take	you	to	the	full	documentation.

http://arongranberg.com/astar/docs/funnelmodifier.html
http://arongranberg.com/astar/docs/modifiers2.html
http://arongranberg.com/astar/docs/getstarted2.html
http://arongranberg.com/astar/docs

